Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сжатие схема

Рис. 7.12. Принципиальная технологическая схема установки получения окисленного битума с реакторами колонного и змеевикового типа. 1— печь 2— смеситель 3— змеевиковый реактор 4— испаритель 5— сепаратор 6— окислительная колонна 7— сепаратор смешения I— сырье II— сжатый компрессором воздух II— возсгух на охлаждение змеевикового реактора IV— битум V— черный соляр VI— газы в печь VII— водяной пар, VIII— вода Рис. 7.12. <a href="/info/1480765">Принципиальная технологическая схема</a> <a href="/info/129840">установки получения</a> <a href="/info/62718">окисленного битума</a> с <a href="/info/63153">реакторами колонного</a> и <a href="/info/1482067">змеевикового типа</a>. 1— печь 2— смеситель 3— <a href="/info/63223">змеевиковый реактор</a> 4— испаритель 5— сепаратор 6— <a href="/info/63202">окислительная колонна</a> 7— сепаратор смешения I— сырье II— <a href="/info/750444">сжатый компрессором воздух</a> II— возсгух на охлаждение <a href="/info/63223">змеевикового реактора</a> IV— битум V— черный соляр VI— газы в печь VII— водяной пар, VIII— вода

    Принципиальная схема детандерного расширения представлена на рис. 41. Детандерное расширение характеризуется постоянством энтропии процесса. Газ засасывается компрессором К при давлении pi и температуре Ti и изотермически сжимается до давления р2 (линия 1—2). Сжатый газ расширяется в детандере Д-Р до первоначального давления рь Теоретически расширение в детандере происходит при постоянной энтропии (линия 2—3) и газ должен охладиться при этом до температуры Тг. При этом работа, совершаемая 1 кг газа в детандере, равна /i2—h-л. В действительности процесс в детандере отклоняется от адиабатического и расширение происходит по политропе (линия 2—< ). Энтальпия газа после расширения будет при этом h i, и работа, затрачиваемая в детандере, составит /дет = /1г— з-Отношение действительной работы к теоретической называется коэффициентом полезного действия детандера [c.124]

    Принципиальная схема дроссельного расширение показана на рис. 40. Газ с давлением pi и абсолютной температурой Ti изотермически сжимается в компрессоре К до давления рз (линия 1—2). Сжатый газ, пройдя дроссельное устройст во Д, расширяется до первоначального давления ри при этом его температура снижается до Гг (линия 2—3). Расширение в дросселе происходит при постоянной энтальпии (/12=/гз). Охлажденный газ нагревается в теплообменнике Т-0 до первоначальной температуры Г, (линия 3—1, Pi = onst), отнимая теплоту от охлаждаемого потока. [c.123]

    Пр и м е р. Апробация методики последовательного оценивания параметров была проведена на кинетической модели (4.14) по двум наборам экспериментальных данных. Первый набор с начальными условиями С (0) = = (1, О, О, 0,0) , соответствующими сжатой схеме реакций (4.16), представлял собой точное решение кинетических уравнений при значениях констант скоростей реакций = 1,5 = 900. [c.211]

    Узел компрессоров двухступенчатого сжатия. Схемы включения компрессоров двухступенчатого сжатия могут отличаться друг от друга конструкцией промежуточного сосуда (оо змеевиком [c.400]

    Для удобства занимающихся капельным методом ниже приводится сжатая схема открытия катионов. [c.147]

    ГОСТ 7163—54, автор А. А. Константинов). Схема вискозиметра приведена на рис. 113. Смазка выталкивается штоком 4 из камеры 5 через капилляр 6. Продавливание смазки через капилляр осуществляется при помощи предварительно сжатой пружины 1. При полностью сжатой пружине истечение происходит под большим давлением с высокой скоростью, по мере передвижения штока давление в камере и скорость сдвига смазки в капилляре падают. Таким образом достигается переменная скорость истечения (градиент скорости сдвига). [c.195]


    Схемы ректификации с тепловым насосом в настоящее время получают широкое распространение в промышленности. В них тепло передается с низшего температурного уровня в конденсаторе на высший в кипятильнике. Тепло передается циркулирующим жидким хладоагентом, испаряющимся в конденсаторе и отнимающим тем самым тепло парового потока в верху колонны, и затем — парами хладоагента, которые после сжатия в компрессоре, охлаждаясь и конденсируясь, испаряют часть жидкости в низу колонны [13]. В качестве циркулирующего хладоагента используют легколетучие испаряющиеся жидкости (внешний хладоагент), например легкие углеводородные газы, аммиак и фреоны. При этом хладоагент циркулирует по внешнему контуру (рис. П-6, aj. Пары хладоагента нагреваются в теплообменнике 2, сжимаются ъ компрессоре до температуры выше температуры испарения остатка и конденсируются в подогревателе 4, при этом создается поток отгонного пара в колонне. Жидкость из подогревателя 4 после охлаждения в теплообменнике 2 дросселируется в дросселе до [c.110]

    Хладоагентом может быть также один из продуктов колонны — дистиллят или остаток (внутренний хладоагент), если по своему составу и свойствам этот поток является достаточно легколетучим, обеспечивающим необходимый тепловой эффект изоэнтальпийного сжатия и расширения при умеренном изменении давления. В таких случаях реализуются схемы с тепловым насосом на верхнем и нижнем продуктах. [c.111]

    В схемах с тепловым насосом на верхнем продукте в качестве хладоагента используют пары орошения и дистиллята (см. рис. П-6, б), которые после подогрева в теплообменнике 2 и сжатия в компрессоре конденсируются в подогревателе колонны 4. Затем жидкость охлаждается в теплообменнике 2, дросселируется в дросселе, и после сепарации образовавшихся фаз в сепараторе часть охлажденной жидкости подается на орошение колонны, а остальное количество отбирается в виде дистиллята. Избыточное тепло компрессора снимается также в холодильнике 3. [c.111]

Рис. 40. Принципиальная схема (а) и диаграмма (б) дроссельного расширения сжатого газа Рис. 40. <a href="/info/24285">Принципиальная схема</a> (а) и диаграмма (б) <a href="/info/928289">дроссельного расширения</a> сжатого газа
    Группа пластин, образующая систему каналов, в которых рабочая среда движется только в одном направлении, составляет пакет. Один или несколько пакетов, сжатых между неподвижной и подвижной плитами, называют секцией. Пластины располагают в пакете одну относительно другой повернутыми на 180°, причем резиновые прокладки обращены в сторону подвижной плиты. Обычно в каждой пластине имеются четыре отверстия по углам для прохода рабочих сред. Промежуточные и концевые пластины могут быть с одним, двумя или тремя отверстиями. Количество их устанавливается схемой компоновки пластин в теплообменнике, которая определяется расчетом. [c.194]

    На рис. 37 приведена технологическая схема газокомпрессорной станции, оборудованной газомоторнькми компрессорами одноступенчатого сжатия. Схемой предусматриваются следующие основные операции. Газ, поступающий на станцию по газопроводу 1, проходит пылеуловители 2 (оборудованные свечами 3) и в очищенном виде по трубопроводам 4 поступает в коллектор 5, из которого идет на сероочистку 6 (если содержание серы в газе более 2 г на 100 м ) и далее во всасывающий коллектор 8. При отсутствии серы газ из коллектора 5 через открытую задвижку 7, минуя сероочистку 6, попадает во всасывающий коллектор 10 компрессоров //. Сжатый газ под давлением (необходимым для перекачки до следующей станции) по трубопроводам 12 направляется в нагнетательный коллектор 9, из которого при необходимости поступает в о росительные холодильники 14 или, минуя их, в установку 15 для осушки. Сухой [c.131]

    Подсчитать а) расход воды б) конечный объем воздуха при выходе из компрессора, работающего, как указано на схеме (рис. 15), если сжатие вдет в 1-й ступени до 3,5 ата, во 2-й—до 12 ата, в 3-й — до 45 ата в) он- [c.151]

    Сырье — гудрон — из резервуара забирается поршневым насосом 1 и подается в змеевик трубчатой печи 2 для нагрева до температуры 260—270 °С. Затем сырье поступает в сборник 3 (возможен вариант схемы без сборника). Отсюда оно забирается поршневым насосом 4 и подается в смеситель 5. Туда же поршневым насосом 9 подают рециркулирующий окисленный продукт и сжатый до 0,7 — 0,8 МПа воздух от компрессора 8. [c.107]

    Щелочная очистка масляных дистиллятов проводится при температурах 140—160 °С и при давлении 0,6—1,0 МПа во избежание испарения воды. Технологическая схема щелочной очистки масел приведена на рис. ХП1-6. Масляный дистиллят насосом 1 прокачивается через трубное пространство теплообменника 2, змеевики трубчатой печи 3 и с температурой 150—170 С подается в диафрагмовый смеситель 4. Туда же закачивается 1,2—2,5 %-ный раствор гидроксида натрия. Из смесителя реакционная смесь поступает в отстойник 5. Температура в отстойнике 130—140 °С, давление 0,6—1,0 МПа, длительность отстоя 3,5—4 ч. Щелочные отходы, выходящие с низа отстойника, охлаждаются в холодильнике 6 погружного типа до 60 °С и направляются в сборники для отделения нафтеновых кислот. Очищенный масляный дистиллят с верха отстойника 5 поступает в смеситель 7 на промывку водой. Температура подаваемой в смеситель химически очищенной воды 60—65 °С, Отделение промывной воды от дистиллята осуществляется в отстойнике 8. Выходящие с низа отстойника промывные воды охлаждаются в холодильнике 9 погружного типа и направляются в сборник для отделения нафтеновых кислот. Очищенный и промытый продукт с верха отстойника 8 проходит теплообменник 2, где, отдавая свое тепло сырью, охлаждается с 90 до 70 °С, и поступает в сушильную колонну 10 для удаления мельчайших капелек воды за счет продувки его горячим сжатым воздухом. Готовое масло с низа сушильной колонны откачивается в резервуары. [c.117]


    На рис. 152 показан продольный разрез нагнетателя типа 540-41-1, предназначенного для подачи нитрозного газа в технологическую схему производства слабой азотной кислоты. Нагнетатель— четырехступенчатый без промежуточного охлаждения газа в процессе сжатия. Температура газа на нагнетании около 280° С. [c.281]

    Еще в более затруднительном положении оказались другие технологические цехи, поскольку одновременно с прекращением подачи производственной воды сначала резко упало давление сжатого воздуха, необходимого для контрольно-измерительных приборов и схем автоматического регулирования, а потом подача воздуха полностью прекратилась. [c.244]

    В качестве другого варианта решения этой задачи на некоторых заводах рационализаторами испытывается и внедряется схема разводки сжатого азота к предохранительным клапанам, расположенным на высоких отметках. Такая система позволяет выполнить опрессовку и регулировку клапанов по месту. При этом транспортироваться в специализированную мастерскую будут лишь те клапаны, которые требуют ремонта или замены, [c.270]

Рис. 35. Схема работы четырехтактного дизеля а всасывание, б —сжатие, й--рабочий ход, г —выхлоп Рис. 35. <a href="/info/94990">Схема работы</a> <a href="/info/1724520">четырехтактного дизеля</a> а всасывание, б —сжатие, й--рабочий ход, г —выхлоп
    Процессы и схема работы двухтактного карбюраторного двигателя сходна с двухтактным дизелем. Разница заключается в том, что, во-первых, цилиндр продувается рабочей смесью, приготовленной в карбюраторе, во-вторых, сжатая рабочая смесь воспламеняется электрической искрой, [c.81]

    На одном из нефтеперерабатывающих заводов при загрузке газомоторного компрессора 10 ГКН-4/1-55 произошел взрыв нагнетательного трубопровода четвертой ступени сжатия, на участке длиной 2,5 м (от обратного клапана до задвижки). Взрыв был вызван подсосом воздуха в ци-линдр четвертой ступени компрессора через неплотно закрытую задвижку нэ продувочной свече, которая согласно проекту была врезана на всасывающей линии четвертой ступени сжатия, и образованием взрывоопасной смеси воздуха с парами смазочных масел. В четвертой ступени компрессора при степени сжатия до 40 температура компримированного воздуха в нагнетательном трубопроводе может в течение 1—3 мин превышать 300 С, до момента поступления компримируемого газа из низких ступеней. Температура же самовоспламенения паров масла составляет 268 °С. Комиссия по расследованию аварии предложила изменить технологическую схему, чтобы исключить возможность попадания воздуха в компрессор через продувочную свечу разработать проект и выполнить обвязку компрессоров, обеспечивающую сброс избыточного давления газа на факел и остаточного на свечу при остановке компрессора установить обратный клапан на общей нагнетательной линии, соединяющей компрессорный цех факельного хозяйства с общезаводской магистралью компримируемого газа. [c.101]

Рис. 84, Схема расположения фунда- Рис. 83. Схемы к определению точки ментных болтов (/ и // — соответ- приложения равнодействующей опор-ственно растянутая и сжатая зона ной реакции Рис. 84, <a href="/info/337514">Схема расположения</a> фунда- Рис. 83. Схемы к <a href="/info/95363">определению точки</a> ментных болтов (/ и // — <a href="/info/361966">соответ</a>- приложения равнодействующей опор-<a href="/info/934640">ственно</a> растянутая и сжатая зона ной реакции
    Испьггания по определению 0 могут бьггь выполнены и без использования специального приспособления (6.4.3,л) на стандартных испытательных машинах, способных создавать сжатие. Схема такого испытания представлена на рис.6.4,4 [44]. В этрм случае число образцов [c.150]

    Для испытания соединений из разнотолщинных пластин часто применяют схему сдвига при сжатии (схема 2,а). По этой схеме при склеивании металлов длина клеевого шва обычно не превышает 10 мм [20], поэтому концентрация напряжений мала, что обеспечивает высокую прочность соединений. Основным недостатком этой схемы является то, что в клеевом шве напряжения распределяются не только неравномерно, но и асимметрично (см. гл. 3, схема 6 в табл. 3.2). [c.117]

    На первый (и не очень внимательный) взгляд эти рассуждения представляются очень наивными. Но подумав немного, мы оценим, насколько глубоки были в действительности догадки древних греков. Заменим воздух, воду, землю и огонь на газ, жидкость, твердое вещество и энергию. Как известно, при охлаждении и сжатии газы сжижаются — образуют жидкости, которые при охлаждении и сжатии в свок> очередь образуют твердые вещества. Разве представления Анаксимена противоречат такой схеме А разве представления Гераклита об огне не похожи на современные представления об энергии, инициирующей химические реакции и выделяющейся при протекании химических реакций  [c.15]

    Поглотительная способность пропиленкарбоната увеличивается с понижением температуры. Обычно используемые температуры абсорбции составляют 30- --6°С. Понижение температуры абсорбции обеспечивает снижение скорости циркуляции, а следовательно, и энергетических затрат. Давление изменяется от 2 до 7 МПа. Регенерация абсорбента осуществляется ступенчатым снижением давления. Для снижения потерь углеводородов, растворяющихся в пропиленкарбопате в процессе абсорбции в схему процесса включается компрессор для сжатия газа, выделяющегося после первой ступени снижения давления насыщенного раствора, и закачки его в сырьевой поток. [c.180]

    Обязательным условием общего системного анализа технологического процесса является количественное описание взаимосвязей потоков сырья, продуктов, вспомогательных веществ и отходов на протяжении всего процесса. Общепринятым сжатым методом такого описания является схема потоков. Количественная схема также является результатом абстрагирования от реальной действительности и соответствует текущему уровню знаний о процессе. Кроме того, количественные величины относятся только к одной совокупности условий, вследствие чего они мало говорят о влиянии изменения входных потоков, а также рабочих условий на выходные параметры. При наличии необходимых данных можно составить схемы материальных потоков по альтернативным вариантам сочетания входных переменных и рабочих условий. Таким образом, при построении моделей процесса основная проблема заключается в описании аппаратов, входящих в технологическую схему производства, с помон1,ью систем уравнений, достаточно простых для того, чтобы задача составления полной схемы материальных потоков оставалась практически разрешимой. Для решения задач масштабирования и получения надежной информации для проектирования нового промышленного производства и последующего управления им важное значение имеет опытно-промышленная стадия разработки процесса. [c.236]

    В производстве итаконовой кислоты произошел взрыв в сбориике формалина емкостью 2000 л. В результате взрыва были разрушены строительные конструкции, оборудование. Сборники для формалина были установлены на площадке, на высоте 2,8 м. К емкости были подведены трубопровод сжатого воздуха, вакуум-воздушяая линия, трубопроводы для загрузки формалина и передачи его далее по технологической схеме. Формалин поступал на завод в 60-литровых полиэтиленовых баллонах. [c.142]

    В соответствии с проектом для заполнения железнодорожных цистерн должны были использоваться только насосы. При эксплуатации возникла необходимость слива бутана из железнодорожной цистерны в хранилища. Было решено передавливать сжиженный газ из цистерны сжатым азотом ио нагнетательной линии насоса и далее по всасывающему трубопроводу в хранилище. Для выполнения этой нерегламентированной операции потребовалось снять с нагнетательной линии иасоса обратный клапан. Поскольку схема не была рассчитана на выполнение этой операции, обратный клапан снимали при заполненном трубопроводе. При ослаблении фланца на трубопроводе началась утечка сжиженного газа в помещение насосной. При работающей приточной вентиляции пары бутана проникли в помещение КИП и распределительного устройства. Образовавшаяся бутановоздушная смесь взорвалась в помещениях КИП и распределительного устройства, в помещении пасосной возник полсар. [c.198]

    Пьезометрические уров 1емеры определяют гидростатическое давление столба измеряемой жидкости, зная которое легко установить уровень жидкости в резервуаре. Этот метод позволяет применять обычные приборы для измерения давления с необходимым диапазоном измерения, учитывающие удельный вес и шеряемой жидкости. Шкалу прибора при этом можно отградуировать либо в линейных единицах (метрах, сантиметрах), либо в объемных единицах (литрах, кубических метрах). Наиболее простой является схема установки в качестве уро внемера стандартного регистрирующего или указывающего манометра. Для использования этого метода измерения сконструированы уровнемеры с про-булькиванием сжатого воздуха через всю высоту столба жидкости. С помощью таких уровнемеров можно измерять уровень в резервуарах под атмосферным или небольшим избыточным давлением, а также передавать показания на некоторое расстояние. [c.58]

    На рис. 130 изображена принципиальная схема основного газопровода компрессора 6М40-320/320 со вспомогательным оборудованием. Конвертированный газ из общего коллектора под давлением 0,02 ат изб. поступает через гидрозатвор 1 в буферный сосуд всасывания I ступени 2. Из сосуда газ двумя потоками попадает на линию всасывания цилиндра I ступени 6, сжимается до 3,55 ат и направляется в холодильник I ступени 3, где охлаждается до температуры не выще 40° С. Пройдя буфер всасывания II ступени 5, газ сгимается в цилиндре II ступени 7 до давления 10,9 ат и направляется последовательно в буфер нагнетания II ступени 8, холодильник II ступени 4 и буфер всасывания III ступени 10. В цилиндре III ступени 11 газ сжимается до 23,3 ат и далее проходит буфер нагнетания III ступени 12, холодильник III ступени 13 и буфер всасываиия IV ступени 14. Из буфера часть газа поступает непосредственно в цилиндр IV ступени 16, а часть проходит холодильники уравнительной полости /5, а затедт направляется в уравнительную полость IV ступени 17. Газ, сжатый в IV ступени до 69,5 ат, проходит буфер нагнетания IV ступени 19, по выходе из которого разделяется на два параллельных потока и поступает в холодильники IV ступени 20. Оба потока соединяются во влагомаслоотделителе IV ступени 21. После влагомаслоотделителя часть газа поступает в цилиндр V ступени 22, а часть, пройдя холодильник уравнительной полости 24, — в уравнительную полость V ступени 23. Газ, сжатый в V ступени до 184 ат, последовательно проходит буфер нагнетания [c.235]

    На рис. 136 изображена схема симметричного одноступенчатого свободнопоршневого дизель-компрессора. Поршни 1 п 12 при движении навстречу друг другу в цилиндре двигателя 6 сжимают воздух до температуры вспышки топлива. Топливо в цилиндр двигателя впрыскивается форсункой 5 в момент подхода поршней к внутренней мертвой точке. При горении топлива в цилиндре резко возрастает давление, которое действует на дифференциальные поршни 1 и 12, раздвигая их в противоположные стороны. В этот период в цилиндрах 2 я 10 продувочного насоса через клапаны 3 и 9 происходит всасывание свежего воздуха, а в цилиндрах компрессора 13 и 20 — сжатие и нагнетание газа. На некотором отрезке путр поршни открывают сначала выхлопные 7, а затем продувочные 4 окна. Сжатый воздух через нагнетательные клапаны 8 тл 18 [c.249]

    В технологических установках по производству этилена и пропилена применяют турбокомпрессоры типа К605-181-1, которые служат для сжатия газов пиролиза этана. Схема турбокомпрессорного агрегата и газопроводов показана на рис. 153. В состав агрегата входят трехцилиндровый восемнадцатиступенчатый компрессор, два повышающих редуктора (между приводным электродвигателем и первым цилиндром и между вторым и третьим цилиндрами), промежуточные газоохладители и сепараторы, приводной электродвигатель, масляная система, органы регулирования, защиты и контрольно-измерительные приборы. [c.283]

    На рис. 155 изображена схема турбокомпрессорного агрегата высокого давления для сжатия азотоводородной смеси. Такими компрессорами будут осиаш,епы азотные заводы в ближайшие годы. Компрессор состоит из четырех отдельных цилиндров цилиндра [c.286]


Смотреть страницы где упоминается термин Сжатие схема: [c.209]    [c.209]    [c.166]    [c.163]    [c.165]    [c.530]    [c.34]    [c.48]    [c.233]    [c.69]    [c.129]    [c.112]    [c.230]    [c.55]   
Техника физико-химических исследований при высоких и сверхвысоких давлениях Изд3 (1965) -- [ c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Аппарат высокого давления сжатия твердой среды, схемы

Белоусенко В.А. Схема развития сети АГНКС в России и перспективы расширения использования сжатого природного газа на автотранспорте РАО Газпром в северных районах Тюменской области на примере ДП Надымгазпром

Бриджмена схемы сжатия

Выбор типа ВКМ, схемы компоновки с учетом динамики расхода и степени сжатия

Назначение и схема ступенчатого сжатия

Схема двухступенчатого сжатия с неполным промежуточным охлаждением

Схема управления агрегатом двухступенчатого сжатия

Схема управления компрессором двухступенчатого сжатия

Схема управления компрессором одноступенчатого сжатия

Схемы двухступенчатого сжатия с полным промежуточным охлаждением

двухсторонним сжатием схемы процесса



© 2025 chem21.info Реклама на сайте