Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Капиллярная колонка температура

    Основой для проведения химической типизации нефтей, как уже указывалось, является ГЖХ всей нефти, определяемая на капиллярных колонках эффективностью в 25—30 тыс. т.т. в режиме линейного программирования температуры. Экспериментальные подробности изложены в работе [8]. Проведение анализа целиком всей нефти позволяет избежать количественных неточностей, связанных обычно с выделением тех или иных фракций, и дает возможность определить неискаженные значения относительных концентраций важнейших реликтовых углеводородов нормальных (состава (С,2—Сзя) и изопреноидных алканов (состава 0,4—Сзл). Дополнительной характеристикой является определение группового состава основной фракции нефтей (так называемое тело нефти), т. е. фракции, выкипающей в пределах 200—430° С (н.Сц—н.Са )- [c.11]


    Капиллярная колонка 30 м, апиезон линейное программирование температуры 100 — ->. З /мин [c.18]

    Капиллярная колонка 80 м, апиезон линейное программирование температуры 100° -  [c.40]

    Капиллярная колонка 50 м, сквалан линейное программирование температуры 50 - 1°/мин [c.51]

    Цифры показывают число атомов углерода в молекуле (строение углеводородов рассмотрено в тексте). На оси абсцисс указаны места элюирования нормальных алканов Си—Сл Капиллярная колонка 80 м, апиезон линейное программирование температуры 100°-  [c.69]

    Б заключение в табл. 20 приведены индексы удерживания рассмотренных в этой главе углеводородов. Индексы удерживания определены для режима линейного программирования температуры. Использовались капиллярные колонки длиной 80 м, газ-носитель — водород. Температурный режим для колонок со скваланом 50° —> —> 1°/мин (конец программы 150° С) для колонок с апиезоном 100° С — 2°/мин. (конец программы 320° С). [c.71]

    Капиллярная колонка 50 м, апиезон линейное программирование температуры 200" -> 2 /мин [c.89]

    Б а — получены из олеиновой кислоты б — выделены из старогрозненской нефти (А ). Капиллярная колонка 100 м, сквалан линейное программирование температуры 50° - 1°/мин [c.201]

    Капиллярная колонка 30 м, апиезон линейное программирование температуры от 100 до 320° С. Скорость подъема 3 /мин [c.222]

    Присутствие геминальной группы в циклопентановом кольце мало сказывается на относительной термодинамической устойчивости пространственных изомеров. Так же мало меняются и их различия в температурах кипения. Так, в равновесной смеси цис-и тракс-1,1,3,4-тетраметилциклопентанов при 600 °К присутствует 16,5% цис- и 83,5% тракс-изомера, что хорошо согласуется с равновесными концентрациями цис- и транс-1,2-диметилциклопен-танов. Близкое значение имеет также разница в температурах кипения рассматриваемых углеводородов. Напротив, температуры кипения цис- и транс-изомеров 1,1,2,4-тетраметилциклопентана оказались столь одинаковыми, что разделить эти стереоизомеры не удалось даже нри помощи самых эффективных капиллярных колонок. Это согласуется с близкими значениями температур кипения цис- и тракс-1,3-диметил циклопентанов. Вероятнее всего, что и термодинамическая устойчивость пространственных изомеров [c.23]

    На капиллярной колонке со скваланом длиной 200 м разделялась смесь изомерных пентадеценов, в том числе цис-, транс-изомеров с разностью температур кипения 0,1 °С. Эффективность колонки составила около 500 тысяч теоретических тарелок, температура анализа 120 °С. Недостаток таких длинных колонок состоит в большой длительности анализа (около 14 ч), а также в высоком давлении в колонке [70]. [c.118]


    Продолжительность анализа сокращается при программировании температуры. Например, повышение температуры колонки со скоростью всего 0,1°С/мин позволило сократить продолжительность анализа фракции углеводородов Сз—Сд на капиллярной колонке длиной 270 м более чем в 3 раза [71]. Одновременное программирование как температуры, так и скорости газа-носителя позволило провести анализ фракции углеводородов Сз—С12 на капиллярной колонке со скваланом длиной 61 м менее чем за 2 ч [72]. На хроматограмме получено около 240 пиков, 180 из них идентифицировано, причем идентифицированные углеводороды составляют 96—99. % образца. [c.118]

    Капиллярная колонка 100 м, диаметром Фракция 60—180 С предварительно раз-0,25 мм со скваланом, температура 50 и деляется на насыщенную и ареновую 75>°С часть [c.121]

    Капиллярная колонка 50 м с апьезоном, программирование температуры от 150 °С со скоростью 2°С/мин [c.122]

    Капиллярная колонка 20 м с апьезоном Ь, изотермический режим при нескольких температурах [c.123]

    Капиллярная колонка 25 м с апьезоном Ь, программирование температуры от 100°С со скоростью 3°С/мин [c.123]

    Капиллярные колонки 25 м с апьезоном Ь и дексил-400, программирование температуры от 100 до 320 °С [c.123]

    ПХБ или их концентрация существенно (более чем на порядок) ниже. Обычно разделение ХОП на капиллярных колонках проводят в режиме ступенчатого линейного программирования температуры колонки от 40 до 250-300 °С со скоростью нагрева 2-3 С/мин. Шоке излагаются основные принципы, метрологические и технические характеристики методик определения ХОС с помощью капиллярной газовой хроматографии. Более подробно описание этих вопросов дано в работах [34-37]. [c.258]

    Итак, капиллярная хроматография не имеет конкурентов при анализе весьма малых количеств вещества. Она позволяет применять колонки значительной длины без существенного перепада давлений, легко осуществлять программирование температуры и значительно сокращать время анализа, приближаясь к экспрессному методу. Эффективность капиллярных колонок значительно выше насадочных. Эти достоинства капиллярной хроматографии позволяют применять ее для анализа многокомпонентных смесей. [c.203]

    В 1957 г. М. Дж. Голей предложил эффективный вариант газовой хроматографии — капиллярную хроматографию. В капиллярной хроматографии в противоположность обычной газо-жидкостной неподвижную жидкую фазу (НЖФ) наносят не на гранулированный носитель, а на внутренние стенки тонкого капилляра, играющего роль хроматографической колонки. Этот капилляр принято называть капиллярной колонкой, хотя он по виду ничего общего не имеет с колонкой, а скорее всего напоминает проволоку. Отсутствие зернистого материала в капилляре устраняет вредное влияние вихревой диффузии на размывание хроматографических полос, поскольку это означает резкое уменьщение ВЭТТ, Далее, уменьшается значительно сопротивление потоку газа-носителя и устраняется возможность разложения жидкой фазы при повышении температуры вследствие каталитической активности носителя — зернистого материала. Каталитической активностью, хотя и в меньшей степени, обладает и внутренняя стенка металлического капилляра. [c.73]

    Проведение анализа. Провести хроматографический анализ на капиллярной колонке одной ия следующих смесей а) искусственная смесь из бензола, толуола, этилбензола, л -ксилола, я-ксилола, о-ксилола в равных объемах б) искусственная смесь из гексана, циклогексана, бензола, тиофена, толуола, этилбензола, л-ксилола, о-ксилола, изопропилбензола, бутилбензола, мезитилена в равных объемах в) искусственная смесь из метилового, этилового, изопропилового, пропилового, изобутилового, бутилового, первичного амилового спиртов в равных объемах г) прямогонный бензин осташковской нефти (фракция с температурой кипения 60—-90° С). Хроматографический анализ осуществить на хроматографе Цвет-1-64 (см. гл. VII, работа 21). [c.80]

    Конструкции и применения других деталей и узлов газового хроматографа. Измерители скорости потока газа-носителя. Разделительная колонка с термостатом и программированием температуры. Способы заполнения колонок, определение параметров колонки (поперечного сечения, газового пространства, коэффициента проницаемости, средней толщины пленки жидкой фазы и доли свободного поперечного сечения, занимаемого пленкой жидкой фазы). Капиллярные колонки. Характерные отличительные особенности с точки зрения теории и возможностей практического применения. Аппаратурное оформление. Воздушные [c.298]

    Отсутствие зернистого носителя дает возможность увеличить длину капиллярной колонки от нескольких десятков до нескольких сотен метров. Столь значительное удлинение колонки резко улучшает разделение анализируемой смеси и позволяет разделять вещества с очень близкими коэффициентами Генри, например орто-, мета- и лара-изомеры, изотопные соединения. Уменьшение диаметра колонки до 0,02 см позволяет работать с очень малыми дозами (порядка 0,1—10 мкг), т. е. капиллярная хроматография является тонким микрометодом анализа. При малых дозах и соответственно малых количествах жидкой фазы на единицу объема капиллярной колонки объемы удерживания и время удерживания компонентов значительно меньше, чем в газо-жидкостной хроматографии в заполненных колонках. Это намного сокращает время анализа, а также позволяет работать при более низких температурах. Объемная скорость потока газа-носителя очень мала, что очень важно при использовании дорогостоящих газов-носителей, таких, например, как гелий и аргон. Отметим, однако, что указанные достоинства в полной мере проявляются лишь при высокочувствительном и неинерционном детекторе. Наилучшим оказался пламенно-ионизационный детектор. [c.117]


    Нанесение жидкой фазы. Жидкую фазу--- Ю7о-ный раствор динонилфталата в диэтиловом эфире—наносят на стенки капиллярной колонки. Заполняют колонку при 0,1—0,5 атм (0,01 — 0,05 МПа) на установке, показанной на рис. IV.12. После появления первой капли жидкости на другом конце капилляра прекращают продавливать жидкую фазу, а колонку сушат током азота при этом же давлении до тех пор, пока весь растворитель не улетучится из колонки. Затем колонку помещают в термостат хроматографа и продувают током газа-носнтеля 2 ч при рабочей температуре колонки. [c.123]

    Франкен и сотр. [41, 61] разработали методику дезактивации стеклянных капилляров карбоваксом 20М в газовой фазе. В нагретый до 250° С распылитель газового хроматографа они помещали стеклянную трубку с 5% карбовакса 20М на хромосорбе WAW. Летучие фракции из предколонки переносились азотом в капиллярную колонку, температура которой была на 5—10° С ниже, чем в предколонке. Дезактивация протекала по всей длине колонки. [c.82]

    Анализ деароматизированного бензина нроводили на газожидкостном хро.матографе Цвет-4 с линейным программированием температуры, на капиллярной колонке длиной 100 мм, диаметром О,.5 мм, неподвижная фаза — сква-лан, детектор — пламенно-ионизационный. Начальная температура анализа 50°, скорость подъема температуры 1°/мин. [c.203]

    В предыдущей главе были рассмотрены некоторые групповые характеристики нефтей. Настоящая глава, как и две следующие, посвящена индивидуальным углеводородам нефтей, т. е. содержит результаты работ, выполненных на молекулярном уровне. Все полученные ниже данные были достигнуты с применением наиболее современных методов исследования, таких, как ГЖХ с использованием капиллярных колонок и программирования температуры и хромато-масс-спектрометрия с компьютерной обработкой и реконструкцией хроматограмм по отдельным характеристическим фрагментным ионам (масс-фрагмептография или масс-хроматография). Широко использовались также спектры ЯМР на ядрах Большинство рассматриваемых далее нефтяных углеводородов было получено также путем встречного синтеза в лаборатории. При этом применялись как обычные методы синтеза, так и каталитический синтез, приводящий к получению хорошо разделяемых смссеп близких по структуре углеводородов, строение которых устанавливалось спектрами ЯМР на ядрах Идентификация любого углеводорода в нефтях считалась доказанной, если пики на хроматограммах (чаще всего использовались две фазы) совпадали, а масс-спектры этого пика и модельного (эталонного) углеводорода были при этом идентичны. [c.34]

    Капиллярная колонка 100 м, сквалая линейное программирование температуры 50 -  [c.35]

    Фракция II (200—430° С). Углеводороды состава jj—Сг- Анализ проводится на капиллярной колонке с апиезопом эффективностью 40—60 тыс. т. т. Газ-носитель водород (применение водорода всегда предпочтительнее при высокотемпературной ГЖХ, так как предохраняет неподвижную фазу от окисления). Начальная температура программы 100° С, конец 300—310° С. Скорость подъема 2°/мин. В этом интервале, кроме, конечно, нормальных алканов, определяются монометилзамещенные алканы, а также алканы изопреноидного типа строения. [c.39]

Рис. 18. Хроматограмма равновесных (300 К) смесей монометилалканов состава i3—Gib Цифры указывают положение метильного заместителя. Капиллярная колонка 80 м, апиезон линейное программирование температуры 100 -> 2°/мин Рис. 18. Хроматограмма равновесных (300 К) смесей монометилалканов состава i3—Gib Цифры указывают положение метильного заместителя. <a href="/info/39867">Капиллярная колонка</a> 80 м, <a href="/info/53194">апиезон</a> <a href="/info/26161">линейное программирование</a> температуры 100 -> 2°/мин
    Наилучшим методом определения изопреноидных углеводородов является ГЖХ, проводимая в режиме линейного программирования температуры с применением высокоэффективных капиллярных колонок, или хромато-масс-спектрометрия. Хорошие результаты дает также предварительное концентрирование изопреноидных алканов путем клатратообразования с тиомочевипой. Изопреноидные алканы нефтей весьма различны по своей молекулярной массе и поэтому находятся в различных по температурам выкипания фракциях. Самый низкомолекулярный нефтяной изопреноид — [c.62]

    Указан состав трициклов (в кружках) и тетрациклов (без кружков). Обозначения пиков (J —1I) приведены в тексте на с. 108 (трициклы) в на с, 112 и 126 (тетрациклы). Капиллярная колонка 80 м, апиезон линейное программирование температуры 100° - 2°/мин [c.109]

    Для анализа антраценового масла использовали насадочные колонки (2 мХЗ мм). Неподвижная фаза — полиэтиленгликоль-фталат (15%) на целите 545, температура колонок 220—240°С. Продукты алкилирования анализировали на стальной капиллярной колонке (50 мХ0,25 мм) с неподвижной фазой Е-301 при температуре колонки 220 °С. В этих условиях определены моно-, ди- и триизопропилфенантрены. [c.137]

    В настоящее время широко [гснользуются также капиллярные колонки. Капиллярные трубки изготовлены из металла нли стекла. Внутренний диаметр капиллярных колонок колеблется в пределах 0,25—0,5 мм, длина от 10 до 200 м. В истинных капиллярных колонках неподвижная фаза находится в виде тонкой пленки на внутренних стенках и не заполняет всего объема. Капиллярные колонки имеют эффективность до 1000 теоретических тарелок на метр длины и в комбииацгиг с масс-спектрометрами позволяют анализировать сложные и многокомпонентные смеси. Нижний температурный предел работы всех колонок ограничивается температурой плавления жидкой фазы. Верхний температурный предел работы колонок в основном ограничивается летучестью жидкой фазы и чувствительностью детектора. Вновь приготовленную колонку обычно необходимо выдержать в течение суток в потоке газа-носителя при температуре, которая на 25° выше максимальной рабочей температуры стационарной фазы. [c.299]

    Реакцию осуществляли в реакторе периодического действия с мешалкой в присутствии кислотного катализатора в интервале температур от 60 до 115°С и времени реакции 1-2 ч. После реакции полученный органический слой анализировали на хроматографе СЬгот-5 с капиллярной колонкой с целью определения процентного содержания в нем 4-ЭД и 4,5 ДМД. Индивидуальные 4-ЭД и 4,5-ДМД были получены встречным синтезом, их строение подтверждено спектрами ЯМР Н. [c.70]

    Углеводородный состав нефтяных пеков, полученных из дистиллятного крекинг-остатка и асфальта деасфальтизации, в сравнении с каменноугольным пеком приведен в табл. 2. Хромато-масс-спектры снимал11 на приборе HP-5989MS-Engene при энергии ионизирующих электронов 70 эВ и температуре ионизационной камеры 200°С. Разделение летучих компонентов проводили на капиллярной колонке НР- [c.194]

    Хромато-масс-спектры сняты на приборе Finigan -402l. Стек-лятщая капиллярная колонка длиной 50 м, внутренний диаметр 0,25 мм, фаза - ВТ-1 (типа SE-80). Программирование температуры осуществлялось от 50 до 300 С со скоростью 4 С/мин. Газ-иоситель-- гелий. 1 емпература испарителя - 300°С. Расшифровка хромато-масс-спектров проводилась с использованием ЭВМ. [c.60]

    Дзержинским ОКБА разработаны аналитические газовые хроматографы с цифровым заданием режима работы серии Цвет-500 . Модель Цвет-530 этой серии имеет два детектора катарометр и пламенно-ионизационный. Хроматограф имеет в своем составе криогенное устройство для поддержания в термостате колонок температур от —99° до 399°С. Для определения микропрнмесей в газах хроматограф оснащен обогатительным устройством, где обогащение производится путем низкотемпературной адсорбции или конденсации. В хроматографе используются стальные и стеклянные насадочные колонки, а также стеклянные капиллярные колонки. Двухканальная схема газа-носителя позволяет устанавливать одновременно две насадочные колонки. Температурный ре -ки.м изотермический и линейное программирование температуры. С помощью интегратора осуществляется обработка информации при работе с пламенно ионизационным детектором и катарометром. [c.63]

    Лабораторный 1азовый хроматограф Цвет-4-67> предназначен для анализа сложных органических смесей (с концентрацией от 2,5-10- %) и неорганических смесей (с концентрацией от 5-10- %) с температурой кипения до 350°С. В хроматографе используются набивные колонки длиной от 1 до 3 м, с внутренним диаметром 3 мм, мнкронабивные колонки длиной до 2 м, с внутренним диаметром Мм и капиллярные колонки длиной до 50 м. диаметром около 0,3 мм. Температура термостата устанавливается от 50 до 300"С. Температурный режим колонок — изотермический. Максимальная температура испарителя не ниже 400°С. [c.245]


Смотреть страницы где упоминается термин Капиллярная колонка температура: [c.47]    [c.47]    [c.61]    [c.93]    [c.36]    [c.90]    [c.159]    [c.103]    [c.288]   
Руководство по газовой хроматографии (1969) -- [ c.347 ]

Руководство по газовой хроматографии (1969) -- [ c.347 ]

Руководство по газовой хроматографии (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Капиллярная

Капиллярность



© 2025 chem21.info Реклама на сайте