Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен, производство

    Производство полиэтилена. Полиэтилен—один из самых распространенных полимерных материалов, находящий широкое применение как в промышленности и сельском хозяйстве, так и в быту. Полиэтилен имеет уникальные физические и химические свойства температура плавления 100—125°С, устойчив к действию концентрированных щелочей и кислот, высокая-эластичность даже при низких температурах примерно минус 50—60Х, абсолютная негигроскопичность, очень высокие диэлектрические свойства и сравнительно малая газопроницаемость пленок. [c.319]


    Полимерные материалы получают главным образом в результате реакций полимеризации, сополимеризации и поликонденсации. Ассортимент высокомолекулярных соединений, а также варианты технологического оформления их получения и каталитические системы, используемые при этом, чрезвычайно разнообразны. Один из наиболее распространенных полимеров — полиэтилен, производство которого непрерывно возрастает и совершенствуется. Повышенный интерес к полиэтилену вызван такими его качествами, как высокая химическая и радиационная стойкость, хорошие диэлектрические свойства, низкая газо- и влагопроницаемость, легкость и безвредность. Из трех известных (основных) промышленных методов получения полиэтилена — полимеризацией этилена при высоком, среднем и низком давлении — в СССР получили распространение первый и последний способы. [c.138]

    На основе разработанных в последнее время систе-м каталитической цепной полимеризации олефинов получены кристаллические волокнообразующие полимеры. Из синтезированных полиолефинов в качестве сырья для производства волокон промышленное применение находят полиэтилен и в особенности изотактический кристаллический полипропилен. [c.344]

    В практике эксплуатации производства отмечались взрывы в бункерах-дозаторах пневмотранспорта полиэтилена. Кроме того, имели место случаи загорания полиэтилена в смесителях при наполнении их полиэтиленом без соответствующей продувки воздухом, что приводило к накоплению этилена, выделяющегося из полиэтилена. Отмечены также взрывы в системе поддува воздуха в анализаторные бункеры. [c.110]

    Полипропилен пока еще производится в меньших масштабах, чем полиэтилен. Производство полипропилена в США развивается следующим образом (в тыс. т) 1960 г.—47 1961 г.— 130 1963 г.— 180 1965 г.— 230. [c.62]

    Кроме того, пластмассы применяют для сосудов, колонн, нутч-фильтров, вентиляторов, насосов и трубопроводов всех видов. Для нутч-фильтров применяется полиэтилен и полипропилен толщиной до 40 лгж. Чаще всего полиэтилен применяется как конструкционный материал для изготовления оборудования в производстве фтористоводородной кислоты. Из полиэтилена или полипропилена штамповкой могут изготовляться рамы для фильтрующих пластин с длиной до 1000 мм. Такие плиты легче чистить и, вследствие высокой коррозионной стойкости, не происходит загрязнение продукта, что особенно важно при производстве красителей и медикаментов. Из полистирола и жесткого поливинилхлорида изготовляют насадочные кольца, характеризующиеся высокой химической стойкостью и небольшим весом при сравнительно небольшой стоимости. Литьем под давлением изготовляют также сопла для фильтров, [c.221]


    При действии хлористого водорода на этилен образуется хлористый этил (исходное вещество для получения тетраэтилсвинца). При полимеризации этилен дает полиэтилен, производство которого быстро растет из года в год. [c.17]

    С точки зрения сырьевых ресурсов полиэтилен находится в чрезвычайно благоприятном положении и является наиболее потенциально важным синтетическим термопластическим материалом. Тот факт, что производство этилена страдало от недостатка снабжения сырьем, является прежде всего результатом патентной политики. Эта обстановка в настоящее время резко меняется в связи с истечением сроков патентов. Производственные мощности полиэтилена в настоящее время расширяются, что приведет к широкому потреблению этого замечательного продукта в соответствии с его уникальными свойствами и благоприятной обстановкой с сырьем. [c.165]

    Полиэтилен. Производство полиэтилена основано на полимеризации газа этилена при высоком, среднем и низком давлениях. Полиэтилен, получаемый при высоком давлении, называют полиэтиленом высокого давления или низкой плотности. Товарный продукт выпускают окрашенным и неокрашенным, в гранулах. [c.6]

    В качестве примера исследуем течение смешиваемых материалов по рабочей поверхности многоступенчатого центробежного (ротационного) смесителя, использование которого весьма перспективно для смешения высокодисперсных твердых (порошковых) материалов с вязкими жидкостями [70]. Так, представляет интерес применение ротационных смесителей в производстве полиэтилена, где перерабатываются большие количества цветных пигментов и сажи, ввод которых в полиэтилен необходим, чтобы придать ему определенные потребительские свойства (различные цвета спектра, термостойкость, диэлектрические свойства и т. д.). [c.188]

    В отделении получения товарной формы гранулированный полиэтилен взвешивают, собирают в трех секциях бункера объемом 20 м , анализируют и отправляют на смешение. При хранении гранулята в бункере из него выделяется этилен, для удаления которого применяют продувку воздухом. Полиэтилен, являясь сильным диэлектриком, при заполнении и опорожнении бункеров дает разряды статического электричества. При недостатке продувочного воздуха создается опасность загорания этилена и полиэтилена в бункере. Во время первых пусков производства было несколько случаев загорания полиэтилена в анализном бункере. Причиной их явилось недостаточное количество воздуха, подаваемого для обдува. После этого количество воздуха было увеличено в два раза, но через 1,5 года эксплуатации в одной секции бункера был вновь обнаружен оплавленный полиэтилен. [c.110]

    В последние годы в Советском Союзе освоено производство новой полимеризационной пластмассы — полипропилена, получаемого из нефтяных газов. Полипропилен обладает более высокой химической стойкостью и более высокой теплостойкостью по сравнению с полиэтиленом. Это объясняется большим средним молекулярным весом полипропилена (80 ООО— 150 000) и более компактной структурой по сравнению с полиэтиленом. [c.424]

    Из полимерных материалов в химической промышленности США широко применяются полиэтилен, полипропилен, фторопласты, кремний-органические полимеры, композиции на основе эпоксидных смол и др. Из них делают различную емкостную аппаратуру, отдельные детали арматуры, трубопроводы. Полимерные материалы используются как защитные покрытия на деталях, работающих в агрессивных средах, или для футеровки сосудов. Липкие ленты из полимеров применяются для обмотки трубопроводов. Перспективным является их применение в качестве замазок для полов химических производств [278]. [c.218]

    Производство полипропилена. Полипропилен превосходит все известные в настоящее время карбоцепые полимеры по термостойкости —170°С, высокой ударной вязкости, прочности на разрыв по диэлектрической прочности и химической стойкости он аналогичен полиэтилену. [c.326]

    Полиэтилен — полимер, образующийся при свободно-радикальной каталитической полимеризации этилена, представляет очень большой интерес по ряду причин. Оц является одним из представителей синтетических пластических масс, производство которых идет исключительно быстро. Полиэтилен нашел разнообразное применение. Препятствием к расширению областей его практического использования является в настоящее время ограниченный объем производства полиэтилена. [c.165]

    Производство полиэтилена терефта- Полиэтилен терефталат лата [c.283]

    Быстро растет потребление этилена для производства полиэтилена. В настоящее время полиэтилен является одним из наиболее широко применяемых продуктов, получаемых из углеводородного сырья. Производство полиэтилена в США в 1957 г. достигло 310 тыс. т/год. Из полиэтилена изготовляют пленки, изоляцию проводов, трубы, формованные изделия для холодильников, детали машин, посуду для косметических товаров и т. д. Полиэтилен не подвергается коррозии и сохраняет высокую прочность в широком диапазоне температур (не выходит из строя даже при замерзании в нем воды). Он обладает хорошими теплоизоляционными свойствами и легко формуется. В настоящее время разработана новая техника обработки полимера — формовка жестких листов, выдавливание нитей из полиэтилена и т. д. [c.75]


    В технологии пластмасс полиэтилен легко обрабатывается обычными способами. Сочетание всех указанных свойств позволяет широко использовать его в промышленности—для производства химически стойкой посуды и труб, упаковочной пленки, антикоррозийных покрытий, в качестве изоляционного материала при производстве кабелей, в особенности для токов высокой частоты, в радиотехнической промышленности, а также для производства бытовых изделий. [c.319]

    Компрессоры сверхвысокого давления повышают давление газа выше 100 МПа. Верхний предел не ограничен. Такие компрессоры изготавливаются, как правило, индивидуально или очень небольшими сериями. Сверхвысокое давление используется при производстве некоторых видов полиэтиленов, в порошковой металлургии и других производствах. [c.7]

    Большое значение приобрел листовой полиэтилен как материал для производства емкостной аппаратуры. Из него формованием изготовляют вкладыши резервуаров, а также самостоятельно работающие аппараты. [c.224]

    В настоящее время полиэтилен производится каждым из трех упомянутых способов. По масштабам производства преимущество имеет пока способ с применением высокого давления. Этот способ позволяет получать наиболее дешевый полиэтилен. В США в 1963— 1965 гг. на долю полиэтилена высокого давления приходилось около 70%. [c.337]

    Только в 50-х годах были разработаны и реализованы в крупном промышленном масштабе процессы производства таких продуктов нефтехимического синтеза, как полиэтилен низкого давления (1953 г.), поликарбонатные пластмассы (1953 г.), полипропилен (1954 г.), полиэфирные волокна (1955 г.), полиформальдегидные смолы (1959 г.), поливинилхлорид, различные типы синтетического каучука, поверхностно-активные вещества и другие. [c.5]

    Компрессоры высокого давления создают давления до 100 МПа. Подобные компрессоры используются в производстве азотных удобрений, некоторых видов полиэтиленов, синтетических бензинов, мочевины и т. д. Такие компрессоры делаются еще более мелкими сериями. [c.7]

    Технология производства многих важных для народного хозяйства продуктов требует, чтобы газ, участвующий в процессах, подавался под высоким давлением. Например, при производстве некоторых видов полиэтиленов необходимо сжатие газов до 250 МПа, а при производстве азотных удобрений реакции проводят при давлении 25—32 МПа. Добыча нефти со дна морей, закачка газов в пласт для увеличения выхода нефти требует газов, сжатых до 70 МПа. Транспортировка природных газов производится при давлении газа до 10 МПа. Даже для привода пневматических машин и инструментов, используемых для механизации работ, воздух сжимается до 0,9—1,5 МПа. [c.76]

    Продуктовая (предметная) специализация может быть дифференцирована по группам продуктов, когда на предприятии или его части концентрируется производство однородных групп продуктов, например пластмасс (полиолефиновых, поливиниловых), волокон (ацетатных, капроновых) по видам продуктов, когда производится только один вид продукции, например полиэтилен, корд, трубы. [c.20]

    Хлористый этил расходуется почти исключительно на производство тетраэтилсвинца. Стирол применяют для получения синтетического каучука и других высокополимеров. Полиэтилен является в настоящее время одним из наиболее важных высокополимеров. С развитием новых областей применения полиэтилена и с разработкой новых типов этого полимера производство полиэтилена может в ближайшем будущем поглощать столько же этилена, как и производство синтетического спирта или окиси этилена. [c.404]

    Не меньшее значение в развитии нефтехимии сыграло внедрение производства этилового спирта методами сернокислотной и прямой гидратации этилена. Последний способ был более прогрессивен, связан с меньшим числом стадий переработки, с меньшими капитальными и эксплуатационными затратами, чем другие способы. Ввод в эксплуатацию заводов синтетического спирта вызвал развитие целого ряда нефтехимических комплексов на основе использования побочных продуктов. К ним относятся стирол, а-метил-стирол, фенол, ацетон, н-бутанол, полиэтилен и др. [c.29]

    Потребность в продукции отрасли определяется по важнейшим продуктам, составляющим наибольший удельный вес в общем производстве (бензин, керосин, дизельное топливо, топочный мазут, полиэтилен и др.). [c.103]

    Вторым типом смазочных масел являлись масла, полученные на основе полиэтиленов, производство которых (полимеризацией С2Н4 в присутствии А1С1з) достигло в Германии за последние годы весьма крупных масштабов [ ]. [c.221]

    В случае очень больших тепловыделений, как, например, в процессе полимеризации этилена в полиэтилен, вопрос отвода тепла может оказаться онределяюш,им фактором в конструктивном оформ-, Ленин и расчете реактора. Так, обш ая длина змеевикового реактора для производства полиэтилена высокого давления (в. д.) определяется необходимой поверхностью теплоотвода. [c.271]

    Компаундирование полиэтилена с красителями и сажей проводится для получения окрашенного продукта, а также для улучшения механических свойств полиэтилена. При компаундировании применяются концентраты полиэтилена с различными красителями и сажей. Процесс компаундирования проводится в обогреваемых камерах и экструдерах, аналогичных применяемым для гомогенизации. Готовые гранулы окрашенного полиэтилена охлаждаются и промываются водой на ситах и поступают на упаковку. На установке компаундирования из всега перерабатываемого полимера 50 % будет получено черного цвета, а остальные—шести различных цветов. Черный полиэтилен применяется в основном для производства труб, окрашенный—для производства кабелей, проводов и предметов широкого потребления. [c.322]

    Производство полиэтилена при среднем давлении имеет ряд преимуществ по сравнению с другими методами, К ним относятся доступность и неток-сичность катализаторов, возможность их многократного использования путем регенерации, простота технологического и аппаратурного оформления процесса, меньшая взрыво- и пожароопасность. Полиэтилен СД имеет более высокие показатели физико-механических свойств, чем полиэтилен высокого давления. [c.9]

    Ниже рассматриваются производства таких распространенных пластических масс как полиэтилен высокого и низкого давления, блочный и блочно-суспензионный полистирол, фе-нолформальдегидные полимеры. [c.388]

    Строительные битумы (ГОСТ 6617-76) по своим свойствам не всегда отвечают современным требованиям для их использования, поэтому возможность улучшить такие свойства, как пенетрация, трещиностойкость, является актуальной. В работе показана возможность модифицирования строительных битумов такими отходами производств, как полиэтилен (отработанный), остаток производства ацетапропилацетата, НМПЭ, кубовые остатки производства спиртов, нефтяные остатки и др. [c.70]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    Самый крупный потребитель этилена — производство полиэтилена. В 1980 г. доля полиэтилена в l иpoвoм потреблении этилена превысила 50%- Полиэтилен высоксго давления (низкой плотности) получают методом радикальней полимеризации при 200— 270 °С и 100—350 МПа в присутствии инициаторов (кислород, органические перекиси). Полиэтилен среднего давления получают в присутствии окисных катализаторов при 130—170 °С и давлении [c.182]

    В 1933—1936 гг. английским исследователям Фоссету и Джиб-сону удалось получить твердый полиэтилен с большим молекулярным весом (5—10 тыс.). Но для этого пришлось применить давление более 1000 ат при температуре 200° С. Для того чтобы шла реакция, оказалось необходимым добавить небольшое количество кислорода. В 1941 г. английский химический концерн Империал кемикал индастри начал промышленное производство полиэтилена на основе применения высокого давления. Полиэтилен получил первоначально применение во время Второй мировой войны в качестве изоляционного материала. Выяснились при этом и другие его ценные свойства — водонепроницаемость, прочность, химическая стойкость при воздействии ряда агрессивных веществ. [c.337]

    Химическая промышленность является одним из основных потребителей поршневых компрессоров. В производстве азотных туков получение аммиака из азотноводородной смеси ведется в зависимости от системы синтеза при давлениях в пределах 25—50 Мн/м . Полиэтилен получают из этилена, сжатого до 250—350 Мн1м На такие давления строят компрессоры большой производительности и мощности. [c.7]

    Полиэтилен является иным продуктом нолимеризации моноолефинов, который благодаря своим исключительным свойствам завоевал широкую область применения (в США и Англии известен под названием политен, в Германии — луполен) его производство может полностью базироваться па нефти. В настоящее время полиэтилен производится по всех странах с хорошо развитой химической иромыпшенностью в Англии его производство было разработано химиками фирмы Имнириел кемикалз индастри (I. . I.). [c.572]

    Производство искусственных смол нуждается в таком широком ассортименте исходных мономеров, что трудно выбрать наиболее важные продукты, которые нефтехимическая промышленность способна поставлять для этой цели. Тем не менее в первую очередь следует назвать стирол, хлористый винил и полиэтилен из этилена, фюрмальдегид из синтетического метанола нефтехимического происхождения и мочевину из аммиака, в синтезе которого используется водород, получаемый конверсией нефтяных газов с водяным паром. [c.22]

    Хлористый винил применяют главным образом для производства поливинилхлорида, одного из трех основных термопластических высокополимеров (поливинилхлорид, полистирол и полиэтилен), а также для получения сополимеров с винилацетатом. В 1955 г. в США произведено 240 тыс. т хлористого винила, из которых большая часть пошла на получение поливинилхлорида и сополимеров. По сравнению с этими данными применение хлористого винила как промежуточного продукта для различных химических синтезов невелико. В основном его используют для получения асйЛ(Л(-дихлорэтилена, который служит также промежуточным продуктом промышленности синтетических смол. [c.167]

    Сырье нефтяного происхождения наиболее широко применяется именно для производства термопластических смол, обладающего большими темпами роста. Представителями этих смол являются полиэтилен, поливинилхлорид и полистирол. № них первый полностью получают из нефтярого сырья, второй — частично нефтехимический продукт (но только в США), а третий следует считать вообще продуктом частично нефтяного происхождения. В 1955 г. производстг о полиэтилена, поливинилхлорида и полистирола в сумме составляло в США около 750 тыс. т. Производственные мощности в Англин по этим трем смолам, которые уже превышают 100 тыс. mjeod, продолжают быстро увеличиваться. Кро.ме того, из нефтехимических продуктов производят в небольшом количестве и другие смолы алкидные, эпоксисмолы и т. п. [c.409]

    К первой группе относится производство низших олефиновых, углеводородов этилена, пропилена, бутилена и др. Продукты этой подотрасли являются либо сырьем для дальнейшей многостадийной переработки с целью получения какого-либо синтетического материала, либо сырьем для непосредственного производства полиолефинов (полиэтилен, полипропилен и др.). Это самая распространенная категория полупродуктов. Сырьем для их получения служат продукты переработки нефти (бензин прямой перегонкц, рафинаты, керосины), а также попутный и природный газ. В дальнейшем предполагается наряду с указанными продуктами исполь- [c.15]


Смотреть страницы где упоминается термин Полиэтилен, производство: [c.5]    [c.219]    [c.358]    [c.186]    [c.17]   
Подготовка сырья для нефтехимии (1966) -- [ c.16 , c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Газохимический комплекс по производству полистирола, полиэтилена и полипропилена (совместная переработка газа и газоконденсата)

Газохимический комплекс по производству полиэтилена и полипропилена (переработка газа)

Краткие сведения и технологическая схема производства полиэтилена

МАТЕРИАЛЫ Нормативные документы на полиэтилен отечественного производства

Маркосов, Е. JI. Беленькая, Р. С. Бурмистрова. Некоторые вопросы очистки этилена, идущего на производство полиэтилена

Непрерывный способ производства полиэтилена высокого давления

Опасности производства полиэтилена

Определение бензина в сточных водах от производства полиэтилена низкого давления

Определение изопропилового спирта в промывных водах от производства полиэтилена низкого давления

Определение изопропилового спирта и бензина в сточных водах от производства полиэтилена низкого давления

Пожарная профилактика при производстве пластических масс Пожарная профилактика при производстве полиэтилена Производство полиэтилена методом высокого давления

Полиэтилен зарубежного производства (Бельгия)

Полиэтилен мировое производство

Производства пластмасс и фенолов Производство полиэтилена низкого давления (высокой плотности)

Производство волокна из полиэтилена

Производство гибких напорных шлангов на основе облученнрго полиэтилена

Производство и потребление полиэтилена

Производство органических полупроводниковых материалов на основе облученного полиэтилена

Производство полиэтилена высокой плотности (низкого давления)

Производство полиэтилена высокой плотности (низкого давления) на металлорганических катализаторах

Производство полиэтилена высокой плотности (среднего давления) на окисных катализаторах

Производство полиэтилена методом низкого давления

Производство полиэтилена низкого давления

Производство полиэтилена низкой плотности (высокого давления)

Производство полиэтилена при высоком давлении

Производство полиэтилена при низком давлении

Производство полиэтилена при среднем давлении

Процессы высокого давления производство полиэтилена

Радиационно-технологические процессы производства материалов и изделий из полиэтилена

Сырье для производства полиэтилена

ТЕХНОЛОГИИ ПРОИЗВОДСТВА ПОЛИМЕРОВ, СИНТЕЗИРУЕМЫХ ЦЕПНОЙ ПОЛИМЕРИЗАЦИЕЙ, И ПЛАСТИЧЕСКИХ МАСС НА ИХ ОСНОВЕ Полиэтилен

Тема 8. Производство полиэтилена

Технологическая производства полиэтилена

Технологическая схема производства полиэтилена высокого давления

Технологический процесс производства листового полиэтилена

Технологический процесс производства пленки из полиэтилена низкой плотности

Технология производства и переработки облученного полиэтилена

Технология производства полиэтилена и сополимеров этилена

Фенол, алкилирование диизобутиленом производство полиэтилена



© 2025 chem21.info Реклама на сайте