Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологическая производства полиэтилена

    В промышленности полиэтилен высокого давления (ПЭВД) получают радикальной полимеризацией этилена при 180—270 °С и давлении 147—245 МПа [1]. Принципиальная технологическая схема производства ПЭВД приведена на рис. 3.5 [1]. [c.266]

    В настоящее время в мировой промышленности существуют четыре метода производства полиэтилена. Один метод при высоком давлении и три — при низком давлении. Полиэтилен высокого давления (ПЭВД) имеет целый ряд преимуществ по применению в тех областях, где требуется высокая прозрачность и чистота материала, поскольку не содержит остатков катализатора. Здесь рассматривается один из возможных способов получения ПЭВД. Одним из основных элементов технологической схемы непрерывной полимеризации этилена при высоком давлении является химический реактор. Подлежащий полимеризации газ после предварительной обработки поступает в химический реактор с мешалкой при температуре 30-50 °С. В качестве инициатора полимеризации этилена при высоком давлении используют молекулярный кислород. Процесс полимеризации очень чувствителен к концентрации кислорода, поэтому дозирование кислорода должно быть стабильным. В результате реакции выделяется большое количество теплоты и в реакторе устанавливается относительно высокая температура, которую, ввиду опасности взрывного разложения, следует ограничить максимальной величиной в 280 С. Поэтому степень превращения этилена в реакторе около 20 %. Время пребывания tau реакционной смеси колеблется в пределах 20-300 с. [c.189]


    Технологический процесс производства изделий из полиэтилена низкой плотности. Для производства полых изделий применяется полиэтилен низкой плотности (высокого давления) со следующими показателями .  [c.224]

    Производство полиэтилена состоит из следующих основных цехов компрессии, полимеризации, насосной горячей воды для подогрева полимеризаторов, грануляции, регенерации растворителей и вспомогательных цехов. Технологический процесс производства полиэтилена высокого давления заключается в следующем очищенный от посторонних примесей газ этилен смешивают с небольшим количеством кислорода и подвергают его ступенчатому сжатию компрессорами высокого и сверхвысокого давления до 150 МПа, после чего он направляется в полимеризатор, где этилен превращается в полиэтилен. Готовый полиэтилен поступает в гранулятор — червячный пресс. Выдавливаемые из гранулятора профили в виде прутков или лент [c.208]

    При помощи ионизирующего действия СВЧ-излучепия (СВЧ-разряда) возможно осуществить следующие химико-технологические процессы [1—3] синтез аммиака, получение окислов азота из воздуха (в производстве азотной кислоты) синтез соляной кислоты, синильной кислоты получение серы из сероводорода и дымовых газов крекинг нефти и нефтепродуктов получение ацетилена из метана производство спиртов реакции хлорирования, нитрования, гидроксилирования, карбоксилирования пт. п. синтез бензола, дифенилена, фенола полимеризацию этилена в полиэтилен получение ситалов получение сверхчистых пленок и металлов и т. д. [c.233]

    Полимерные материалы получают главным образом в результате реакций полимеризации, сополимеризации и поликонденсации. Ассортимент высокомолекулярных соединений, а также варианты технологического оформления их получения и каталитические системы, используемые при этом, чрезвычайно разнообразны. Один из наиболее распространенных полимеров — полиэтилен, производство которого непрерывно возрастает и совершенствуется. Повышенный интерес к полиэтилену вызван такими его качествами, как высокая химическая и радиационная стойкость, хорошие диэлектрические свойства, низкая газо- и влагопроницаемость, легкость и безвредность. Из трех известных (основных) промышленных методов получения полиэтилена — полимеризацией этилена при высоком, среднем и низком давлении — в СССР получили распространение первый и последний способы. [c.138]

    Полиэтилен при среднем давлении - 40 кгс/см получается в присутствии различных катализаторов и при разных режимах. С гомогенными катализаторами полимеризация проводится в суспензии. С гетерогенными катализаторами (окиснохромовыми и продуктами взаимодействия металлоорганических соединений с соединениями переходных металлов, нанесенных на носитель) полимеризация проводится в суспензии (при 60—80 °С) и в растворе (при 150—180 С). При повышении давления и соответственно концентрации этилена в реакционном объеме выход полимера на весовую единицу катализатора настолько повышается, что специальных операций по очистке полиэтилена от остатков катализатора не требуется и в том случае технологическая схема производства полиэтилена высокой плотности сильно упрои ается. [c.30]


    Технологическая схема производства ПЭВД в трубчатом реакторе представлена на рис. 4.2. Входной поток этилена поступает в буферную емкость 1, где смешивается с возвратным потоком этилена низкого давления. Из буферной емкости 1 смешанный этилен выходит двумя потоками. Первый, поступая на участок 2 смешивания с инициатором — кислородом, подается к компрессорам первого каскада 3 и далее разделяется на два потока при помощи регулятора соотношения 4. Регулятор соотношения обеспечивает заданную концентрацию инициатора — кислорода в обоих исходных потоках реакционной смеси. Второй поток, выходящий лз буферной емкости 1, после сжатия до промежуточного давления компрессорами первого каскада 3 смешивается с возвратным потоком этилена промежуточного давления и разделяется на два равных потока. Исходные потоки реакционной смеси подаются ж компрессорам второго каскада 5 и б, которые создают рабочее давление. Далее реакционная смесь нагревается в подогревателях 7 ж 8 перегретой водой, а затем поступает в трубчатый полимери-зационный реактор. Реактор состоит из двух зон 9 и 10. На входе в каждую из зон реактора в реакционную смесь вводится второй инициатор — смесь органических перекисей, которая имеет более низкую температуру разложения по сравнению с кислородом. В рубашке реактора противотоком циркулирует перегретая вода. Выходящая из второй зоны реактора смесь этилена и полиэтилена поступает в холодильники 11, 12 и далее в отделители промежуточного 13 и низкого 24 давления, В отделителях непрореагировавший этилен выделяется из смеси. Расп пав полиэтилена поступает в гранулятор 15. Приготовленный полиэтилен в виде гранул направляется для дальнейшей переработки или отгружается потребителям. Возвратные потоки этилена подаются в исходную смесь. В цикл возвратного газа низкого давления подается модификатор — пропан. Для контроля за качеством продукции, в частности для определения показателя текучести расплава, используют полиэтилен после гранулирования. [c.160]

    Использование этана позволяет существенно уменьшить капитальные вложения в производство этилена и сократить сроки строительства химических и нефтехимических производств с законченным технологическим циклом (этилен — полиэтилен, этилен — этиловый спирт и т. д.), так как при пиролизе этана обеспечивается минимальный выход побочных продуктов, для утилизации которых требуются большие капитальные вложения (выход этилена из этана 70%, из бензина 27%, из вакуумного газойля 15%). [c.9]

    Таким образом, в настоящее время имеется ряд способов промышленного производства полиэтилена как при высоких давлениях (1200— 2000 кг/см ), так и при низком давлении (5—70 кг см ) и даже при 1 ат. Эти способы разнятся не только по технологическому оформлению, но и по свойствам получающихся полиэтиленов. [c.782]

    По объему производства поливинилхлорид наряду с полиэтиленом является одним-из важнейших полимеров, используемых для получения пластмасс. Своему широкому применению поливинилхлорид в значительной степени обязан успехам в создании для него эффективных термостабилизаторов, поскольку нестабилизированный гомополимер имеет низкую термостойкость и плохо перерабатывается в расплавленном состоянии. Технологическое поведение поливинилхлорида можно также улучшить путем понижения температуры формования за счет введения в него звеньев другого мономера, например винилацетата. Однако этот метод получил меньшее распространение. Компаундирование поливинилхлорида трикрезилфосфатом и другими нелетучими жидкостями, приводящее к получению термостабильного продукта, является одним из наиболее важных направлений улучшения свойств этого материала. [c.258]

    На лабораторной и укрупненной установках было исследовано влияние давления, температуры, количества катализатора, глубины превращения, состава исходного газа и различных примесей на скорость процесса полимеризации и свойства получающихся полиэтиленов при давлении до 2000 ат. Были получены технологические показатели для проектирования промышленного цеха производства полиэтилена путем циклической полимеризации этилена нри давлении 1500 ат. [c.440]

    Производство синтетических смол и пластических масс. Учитывая высокую народнохозяйственную эффективность синтетических смол н пластмасс и их большую роль в развитии важнейших отраслей народного хозяйства, в перспективе намечается сохранить высокие темпы роста этой отрасли химической промышленности, значительно улучшить структуру пластмасс путем ускоренного развития полимеризационных материалов, в первую очередь полиолефинов, поливинилхлорида и полистирола, значительно расширить мощности по производству пластмасс за счет укрупнения агрегатов и технологических линий по полиэтилену до 100—150 тыс. т/год, карбамидным смолам — до 100 тыс. т/год, по поливинилхлориду — до 100—150 тыс. т/год. [c.224]

    В промышленности в настоящее время существуют два технологических процесса изготовления эластичных магнитов. По первому технологическому процессу получают материалы, представляющие собой композиции на основе натурального или синтетического каучука с порошком феррита бария. Резиновая смесь изготавливается на вальцах. Перед шприцеванием готовая смесь разогревается. Разогретая резиновая смесь подается на шприц-машину, на которой производится профилирование эластичного магнитного материала в изделие практически любой формы. Полученные профили помещаются в вулканизационный котел, вулканизуются, а затем намагничиваются. Этот технологический процесс производства эластичных магнитов имеет ряд недостатков — низкая производительность смесительного оборудования, наличие малопроизводительных ручных операций, отсутствие поточности технологического процесса. Поэтому многие зарубежные фирмы и отечественная промышленность начали изготавливать эластичные магниты на основе полимеров, не требующих вулканизации, таких как полиэтилен с полиизобутиленом, термоэластопласт, полиэтилен с винилацетатными группами (второй технологический процесс). [c.156]


    Технологический процесс производства полиэтилена в присутствии триэтилалюминия или диэтилалюминийхлорида и четыреххлористого титана может быть как цикличным, так и непрерывным [60]. ]3 настоящее время полиэтилен получается в агрегатах производительностью 2,5—4 тыс. т/год в одной технологической нитке. Принцип работы такого агрегата показан на рис. 4 [111]. В полимеризатор 1 емкостью около 10 л непрерывно подается свежий очищенный и высушенный этилен и предварительно приготовленный катализатор в низкокипящем бензине. Этилен подается через систему эрлифта, расположенную в нижней части реактора, и обеспечивает перемешивание реакционной массы. Полимеризация протекает под давлением 3—4 ат. нри 80 С. Теплота реакции отводится за счет осуществляемой газодувкой 4 циркуляции паро-газовой смеси через систему сепараторов 2, 3, 5, 7 а холодильник в. Непрореагировавший этилен через холодильник 12 и сепаратор 13 направляется на очистку. [c.31]

    На отдельные виды технологических операций замена поврежденных участков полиэтиленовых труб, врезка ответвлений в действующий полиэтиленовый газопровод, производство газоопасных работ, техническое обслуживание открытых участков полиэтиленовых труб с полиэтиленовыми и неразъемными соединениями полиэтилен-металл должны быть разработаны ведомственные инструкции, согласованные и утвержденные в установленном порядке. [c.663]

    Д. Полиэтилен. Для этого производства характерно многообразие технологических процессов получения полиэтилена различных сортов (высокой и низкой плотности, высокого и низкого давления). В процессе полимеризации в безводной среде при высоком давлении в канализацию сбрасывают шаровидные полимерные частицы и большое количество масел от компрессоров. После отделения их флотацией остаточная БПК стока обычно незначительна. [c.265]

    В последние годы в ряде стран, в том числе в СССР, организовано производство полипропилена, который применяется для тех же целей, что и полиэтилен, но обладает более высокой термостойкостью и меньшей влаго- и газопроницаемостью (табл. 27). Технологическое оформление процесса получения полипропилена аналогично процессу получения полиэтилена низкого давления в присутствии металлор-ганических катализаторов. [c.139]

    Особенности в структуре строения линейных полимеров. Многие высокомолекулярные вещества, к числу которых относятся целлюлоза, каучук и синтетические волокна, имеют смешанную структуру. Возникающие между макромолекулами силы притяжения иногда достигают таких величин, что молекулы располагаются симметрично, образуя кристаллические области. Другие области линейных полимеров остаются неупорядоченными, аморфными. Эта особенность строения линейных полимеров служит наглядным подтверждением возможности сочетания в одном и том же материале высокой прочности с отличной пластичностью. В неразвернутом состоянии макромолекулы вытягиваются достаточно легко. При полном растяжении они настолько близко подходят друг к другу, что оказываются в сфере действия межмолекулярных сил, благодаря чему полимер делается исключительно прочным. Растягивание макромолекул линейных полимеров является одной из важнейших технологических операций при производстве волокон, повышающей их прочность. Макромолекулы кристаллических полимеров обладают регулярной структурой. К ним относятся полиэтилен, полиизобутилен и ряд других полимеров линейной полимеризации. В упорядоченных кристаллических областях макромолекулы связаны друг с другом прочно межмолекулярными и водородными связями. В результате этого материал приобретает устойчивость к разрыву и жесткость. Аморфным областям свойственно противоположное— они придают материалу гибкость и эластичность. [c.281]

    Считается, что методы моделирования химико-технологнче-ских процессов прошли три основных этапа эмпирическое моделирование, моделирование на основе теории подобия и математическое моделирование [197]. Согласно [197] первый этап — эмпирическое моделирование — начался в конце XIX — начале XX века и длился вплоть до 50—60-х годов. Второй этап — моделирование на основе теории подобия — получил распространение в 40—60-е годы. Третий этап — метод математического моделирования является в настоящее время доминирующим. Однако, сложность, многофакторность химико-технологических процессов вообще, а процессов получения полимеров в особенности, практически исключает возможность его применения для составления полного математического описания. Даже в производстве таких крупнотоннажных полимеров, как полиэтилен, поливинилхлорид, полистирол,. математические модели сегодня разработаны лишь для отдельных стадий синтеза и не охватывают всего технологического процесса. Для других, менее проработанных технологий получения полимеров математическое моделирование еще весьма робко делает свои первые шаги. [c.241]

    Технологический процесс производства волокна лавсан включает в себя следующие основные стадии синтез полимера полиэтилен-терефталата, формование волокна и последующую обработку получаемого волокна. [c.153]

    Полиэтилен низкой плотности получают при давлении от 1300 до 2500 кгс/см и температуре 155— 280°С. Реакция полимеризации проходит в трубчатых реакторах или в реакторах автоклавного типа с перемешивающим устройством. Процесс получения полиэтилена протекает по непрерывной схеме. До последнего времени мощность одного потока по производству полиэтилена в трубчатых реакторах составляла 6 тыс. т в год (два трубчатых реактора), в реакторах автоклавного типа — до 12 тыс. т в год. Увеличение мощности реакторов затрудняется отводом большого количества тепла, выделяемого при полимеризации этилена. Благодаря разработке новых узлов полимеризации этилена появилась возможность создания полностью автоматизированного технологического потока производства полиэтилена мощностью 50 тыс. т (и более) в год в одной линии. [c.41]

    Ткани, обработанные клеящими покрытиями, содержащими полиэтилен полифенил изоцианат или дианизидиндиизоцианат (и т. д.) могут храниться несколько дней без уменьшения прочности склеивания, тем самым обеспечивая технологическую гибкость производства в целом. [c.69]

    Ноябрьский Пленум ЦК КПСС отметил, что Советский Союз обладает неограниченными сырьевыми возможностями для производства синтетических материалов, имеется большое количество законченных разработкой новых технологических процессов, обеспечивающих получение материалов более дешевых, более стойких и более доступных. Эти материалы — полиэтилен, стеклопласты, синтетические смолы (феноло-формальдегидные, эпоксидные и др.) — находят широкое применение и в промышленности, и в строительстве, и в производстве изделий бытового назначения. [c.3]

    Можно без преувеличения сказать, что потребление полиэтилена ограничивается только масштабами его производства. В свою очередь, размеры производства полиэтилена до последнего времени ограничивались сложностью его получепия. Как уже в свое время освещалось на страницах журнала Успехи химии [1], полиэтилен до последнего времени получался полимеризацией чистого этилена под давлением 1200—2000 атм при температуре около 200°, инициированной небольшими количествами кислорода, причем степень превращения этилена за один проход не превышает 12—15%. Из-за невысокой степени превращения этилена возникает необходимость в неоднократной циркуляции его в реакционной системе, что еще в большей степени усложняет технологический процесс. Эти обстоятельства заставляли искать новые пути полимеризации этилена в полиэтилен ири более низких давлениях и возможно больших степенях превращения исходного углеводорода в твердый полимер. Однако до самого последнего времени не удавалось решить эту задачу. Исключительно важным событием явилось открытие немецким химиком К. Циглером с сотрудниками метода полимеризации этилена в полиэтилен ири атмосферном давлении в присутствии триэтилалюминия и четыреххлористого титана. Этому открытию предшествовало длительное и систематическое исследование реакции полимеризации этилена и его гомологов под влиянием металлоорганических катализаторов. Начало изучению реакции полимеризации непредельных углеводородов в присутствии металлоорганических соединений было положено ранними работами Циглера [2—4], посвященными исследованию реакции между углеводородами и металлалкилами (щелочных металлов). Была изучена, например, полимеризация бутадиена под влиянием литийэтила [5] и термостойкость этого соединения [6]. [c.7]

    Нефтехимические и химические производства, базирующиеся на нефтяном и газовом сырье, возникают вблизи нефте- и газоперерабатывающих заводов, на трассах трубопроводов или в районе портов, где концентрируются большие количества нефти, нефтепродуктов, сжиженных газов. Это, естественно, создает широкие возможности комбинирования различных производств, обеспечивающего экономию общественного труда и ускоренный технический прогресс. Поэтому развитие нефтехимической промышленности пошло по пути создания нефтехимических комплексов, объединяющих установки нефте- и газодобывающей, химической и нефтехимической промышленности, связанные между собой технологически, энергетически, экономически, а часто и организационно в единый производственный объект. При создании и функционировании нефтехимических комплексов (НХК) в наиболее ярком виде проявились характерные черты основных типов комбинирования вертикального - когда воедино связывается последовательная технологическая цепочка переработки исходного сырья в конечную продукцию (например, этан - этилен - полиэтилен) горизонтального - когда организуется комплексная переработка многокомпонентного сырья (например, пиролиз прямогонных фракций - химическая переработка получаемых при пиролизе этилена, пропилена, бензола, бутадиена) вертикально-горизонтального - когда сочетаются оба предыдущих типа и осуществляется как комплексная переработка многокомпонентного нефтяного или газового сырья, так и последовательная переработка сырья в полупродукты, а последних - в конечные продукты. Именно по вертикально-горизонтальному типу созданы наиболее известные нефтегазохимические комплексы мира. [c.415]

    Производство полиэтилена при среднем давлении имеет ряд преимуществ по сравнению с другими методами, К ним относятся доступность и неток-сичность катализаторов, возможность их многократного использования путем регенерации, простота технологического и аппаратурного оформления процесса, меньшая взрыво- и пожароопасность. Полиэтилен СД имеет более высокие показатели физико-механических свойств, чем полиэтилен высокого давления. [c.9]

    При совершенствовании технологических процессов производства полиэтилена при высоком и низком давлении в результате сополимери-зации с различными высшими а-олефинами, применения новых эффективных катализаторов достигнута возможность получения полимера с полным диапазоном плотностей (910-970 кг/м ) как при высоком, так и при низком давлении. И поскольку границы по плотности для ПЭВД и ПЭНД больше не существует, не следует называть Г1ЭВД полиэтиленом низкой плотности, а ПЭНД - полиэтиленом высокой плотности. [c.4]

    В области синтеза пластмасс по-прежнему ведутся работы но организации многотоннажных производств с использованием агрегатов большой мощности, комплексной автоматизации и механизации процессов. При этом предполагается в ближайшие два десятилетия сохранить структуру производства синтетических полимеров. Это означает, что среди пластмасс будут доминировать полиэтилен, полипропилен, поливинилхлорид и сополимеры стирола, т. е. в основном термопластичные материалы. В настоящее время разрабатываются процессы производства нолиэтилепа низкой и высокой плотности на агрегатах единичной мощности 100—150 и 80—100 тыс. т/год соответственно с использованием активных катализаторов на носителях. Разрабатывается непрерывный технологический процесс получения полипропилена в присутствии новых высокоэффективных катализаторов. [c.148]

    Наиболее интенсивное структурирование наблюдается при облучении СКБ и его смеси с полиэтиленом. Радиационная вулканизация резиновых смесей, содержащих в своем составе наряду с каучуком такие пластики, как полиэтилен, полистирол и др., позволяет получать резины, в которых трехмерные структуры образованы как молекулами каучука, так и пластика, т. е. имеет место совулканизации [1, 21. Необходимая коже-подобность, твердость и другие свойства резин обеспечиваются сочетанием каучуков с полиэтиленом, полистиролом и др. В результате совулканизации пластиков с каучуком под влиянием облучения система утрачивает вязко-текучие свойства. Это позволяет получать кожеподобные резины, которые в отличие от серных вулканизаторов не будут давать необратимых дефектов, которые имеют место при тепловой и других видах их обработки на стадиях технологического процесса обувного производства. Подошвенные резины, полученные методом радиационной или радиационно-термической вулканизации каучуков с пластиками, характеризуются высокими физико-механическими свойствами [2, 3]. [c.322]

    Технологическая схема процесса производства полиэтилена среднего давления ( 35 ат) изображена на рис. 60. Катализатор активируют в аппарате 1, а затем суспендируют в растворителе в аппарате 2. В полимеризатор 3 загружают этилен, растворитель и суспензию катализатора (концентрация в растворителе этилена —5%, катализатора — 0,5%). Полимеризация этилена происходит при 125—150 °С. Образующийся полиэтилен растворяется в растворителе. Раствор полиэтилена, содержащий взвешенный катализатор, из полимеризатора 3 направляют в газоотделитель 4 для удаления этилена. Чтобы облегчить отделение катализатора, раствор полимера разбавляют горячим растворителем в аппарате 5. Катализатор удаляют из раствора на центрифуге 6 и барабанном фильтре 7. Очищенный от катализатора раствор полимера направляют в аппарат 8, в котором полиэтилен высаждают путем охлаждения (32—35 °С) или добавлением осадителя (спирта). После высаждения полиэтилена полученная суспензия проходит через фильтр 9, откуда полиэтилен поступает в сушилку 10, а растворитель — на очистку и [c.124]

    В Японии пущена технологическая установка для получения полиэтилена радиационньм способом. Она состоит из компрессора для сжатия этилена, трубчатого реактора, в котором полимеризация этого мономера происходит под действием ионизирующего излучения, и непрерывно работающего разгрузочного устройства [266]. Экономический расчет показывает, что переход на радиационный способ сокращает стоимость производства полиэтилена на 40% [36]. Применяя этот метод, можно в одном и том же аппарате получать полиэтилен, как низкой, так и высокой плотности. Радиационный метод является более безопасным, чем применяемые в настоящее время, так как при полимеризации этилена под действием ионизирующих излучений не образуются перекиси и другие взрывоопасные вещества [357]. Преимущество радиационного метода перед существующими состоит также в возможности получать порошкообразный продукт. В таком продукте содержится примерно в 10 раз меньше двойных связей, чем в полиэтилене, который получается в присутствии катализаторов [c.9]

    Проведенные технологические разработки получения высших алюминийалкилов из триэтилалюминия и этилена позволили американской фирме ono o создать крупнотоннажное непрерывное их производство. Процесс состоит из следующих основных стадий [61] активирование алюминия, содержащего титан получение диэтилалюминийгидрида (120°С, 8,5 МПа) получение триэтилалюминия (100—150°С, 2,5 МПа) отделение триэтилалюминия от непрореагировавшего алюминия получение высших алюминийалкилов (120°С, 10 МПа). Синтез высших алюминийалкилов осуществляется в аппарате змеевикового типа, в который в 10—15 местах по длине впрыскивается этилен. Помимо высших алюминийалкилов в качестве побочных продуктов образуются низкомолекулярные олефины и полиэтилен. Последний осаждается на стенках реактора, его периодически удаляют горячим растворителем. [c.169]

    В последние годы производство винилхлорида ориентируется на использование нефтехимического сырья. Однако нефтехимическое сырье, и прежде всего этилен, может перерабатываться в различную продукцию химической промышленности — полиэтилен, ацетальдегид, этиловый спирт и т. д. Сравнительно ограниченная транспортабельность этилена и зависимость размещения и мощности установок по этилену от размещения и мощности нефтеперерабатывающих заводов может привести к тому, что ресурсов этилена в отдельных пунктах или даже в целом по стране будет недостаточно для обеспечения всех потребителей. В условиях ограниченности нефтехимического сырья необходимо пре.дусмотреть возможность получения винилхлорида из любого другого сырья — метана. Кроме ограничения сырьевых ресурсов, на выбор оптимизируемых способов получения продукции могут оказать влияние и другие условия, например возможность осуществления строительства необходимого числа цехов по новой технологии для обеспечения всего прироста потребности в рассматриваемом продукте. При выборе способов производства учитывают также возможности модификации технологического процесса, т. е. возможность получения продукта при определенных изменениях технологического режима норм расхода основных видов сырья, энергетических средств и т. д. [c.204]

    Технологический процесс разделяется чаще всего на несколько стадий, осуществляемых в различных аппаратах. Сочетание этих различных стадий (а также и аппаратов) в определенной последовательности называется технологической схедюй производства. Продукт, получаемый в какой-либо промежуточной стадии, называется промежуточным продуктом (полупродуктом, полуфабрикатом), а получаемый в конечной стадии — готовым продуктом. Наряду с ним нередко образуются отходы производства. Используемые отходы называют побочными продуктами, а неиспользуемые — отбросами. Часто готовый продукт одного производства служит сырьем или полупродуктом для другого. Например, полиэтилен, являясь готовым продуктом, служит сырьем для производства из него различных изделий сахарный песок — готовый продукт для непосредственного потребления и вместе с тем полупродукт для производства рафинада и т. д. [c.3]

    Когда в середине 50-х годов были разработаны первые технологические процессы получения полиэтилена путем каталитической полимеризации при низком давлении, то казалось, что этот способ вытеснит процесс полимеризации при высоком давлении. Однако этого не произошло. Вскоре выяснилось, что полиэтилен, получаемый каталитической полимеризацией, имеет линейное строение, отличается высокой кристалличностью, более высокими плотностью и температурой плавления. Области применения ПЭВП и ПЭНП оказались в основном разными, и производство обоих типов полиэтиленов стало развиваться параллельно. Основными областями применения ПЭВП стали изделия, получаемые литьем под давлением, напорные трубы, канистры, бутыли. [c.15]

    В промышленности пластмасс применяют процессы получения полимеров из концентрированных растворов. Введение в технологическую линию стадии концентрирования позволяет значительно интенсифицировать процессы получения полимеров и снизить их металло- и энергоемкость. Это в первую очередь относится к производствам многотоннажных полимеровполиэтилена, полипропилена, полистиролов и др. Так, содержание полиэтилена низкого давления в растворителе (циклогексане) составляет 10—11%. Циклогексан удаляют подачей острого пара в отпарную колонну. Для повторного использования циклогексана требуется ректификационная очистка его. Обезвоживание полиэтилена осуществляют в центрифугах, а сушку — в сушильных барабанах. Потери полимера при центрифугировании составляют от 2 до 3%. После тепловой обработки порошкообразный полиэтилен в холодном состоянии смешивают со стабилизаторами и другими добавками и направляют на переработку р экструдере. Затраты энергии при таком многостадийном процессе составляют от 0,17 до 0,2, кВт-ч/кг. [c.92]

    Полимеры широко применяются для упаковки продукции химической промышленности минеральных удобрений, лакокрасочных материалов, ядохимикатов, препаратов бытовой химии и др. Потребность в полимерных материалах для этих целей растет Bsi oKHMH темпами. Так, за период 1975—1980 гг. потребность в полиэтилене для упаковки химической продукции возрастет в 4 раза, полистирольных пластиков — в 2,5 раза. Более половины потребности в полимерах для упаковки химической продукции приходится на упаковку минеральных удобрений. В период 1976—1980 гг. намечено увеличить производство мешков для затаривания удобрений в 4,5 раза. При хранении удобрений затаренными в мешки осложняются работы по приготовлению их к внесению в почву (мешки необходимо разрывать). Кроме того, разорванные мешки, попавшие вместе с удобрениями в бункер разбрасывателя, являются причиной частых нарушений технологического режима. Поэтому в будущем планируется увеличение бестарных перевозок удобрений до потребителей. Однако эта проблема осложняется дефицитом складских помещений. Хранение же незатаренных удобрений под открытым небом сопряжено с большими потерями питательных веществ и ухудшением физикомеханических свойств удобрений. Удобрения, слеживаясь, теряют сыпучесть и превращаются в монолит. На подготовку таких удобрений для внесения в почву требуются дополнительные затраты времени, труда и денежных средств. [c.185]

    Помимо гомо полимеризации крайне интересными оказываются процессы сонолимеризации как линейных, так и разветвленных высших а-оле-финов с этиленом и пропиленом с образованием статистических и блок-сополимеров, в том числе так называемых полиалломеров. Сополимеризация позволяет получать модифицированные полиолефины массового назначения, а в некоторых случаях создать принципиально новые процессы промышленного получения полиолефинов, в первую очередь полиэтилена. Так, известно, что решение такой важной задачи, как унификация технологического процесса получения полиэтилена таким образом, чтобы практически с одинаковыми каталитическими системами в стандартном реакционном оборудовании получать полиэтилен различной плотности, реально возможно при сонолимеризации этилена с бутеном-1. Можно ожидать, что использование в этом процессе и других олефинов в качестве сомоно-меров (не исключены и случаи создания тройных сополимеров) приведет к расширению возможностей производства полиэтилена с регулируемым комплексом свойств на унифицированном оборудовании. [c.5]

    Технологический процесс производства полиэт 1леновых труб заключается в выдавливании на экструзионной машине расплавленного полиэтилена через кольцеобразную щель, охлаждении полученной трубы в специальной калибрующей насадке, являюи 1ей-ся продолжением мундштука, и последующем охлаждении трубы в камере охлаждения. Калибрующая насадка устанавливается в связи с тем, что расплавленный полиэтилен обладает большой адгезией к металлу и не способен сохранять придаваемую ему форму. Для охлаждения трубы в насадке при ее непрерывном движении применяется специальное тянущее устройство (рис. 33) с бесступенчатым приводом. Трубы до двух дюймов сматываются в бухты, а трубы с большим диаметром режутся на куски специальным станком. [c.145]

    В настоящее время ситуация изменилась коренным образом, Хотя в исследовательских лабораториях химики-синтетики про-доллсают синтезировать тысячи новых макромолекулярных соединений, лишь единицы из них становятся объектами промышленного производства. Для подавляющего большинства полимеров, производимых в промышленном масштабе, существует установившаяся, отработанная в течение многих лет технология производства н переработки. Сегодня лишь несколько полимеров составляют основную массу всех широко используемых пластиков. К ним, в первую очередь, относятся полиэтилен, поливинилхлорид, различные каучуки, некоторые полиамиды, полипропилен, полистирол. Появлению на рынке нового полимера предшествует длительная, трудоемкая стадия создания технологического процесса его производства и переработки в изделия. Естественно, что новый полимер может успешно конкурировать с уже имеющимся лишь в том случае, если он обладает либо уникальными свойствами, либо достаточно дешев. [c.10]

    Технологический процесс производства полиэтилена в присутствии триэтилалюминия или диэтилалюминийхлорида и четыреххлористого титана может быть как цикличным, так и непрерывным [60]. В настоящее время полиэтилен получается в агрегатах производительностью 2,5—4 тыс. г/год в одной технологической нитке. Принцип работы такого агрегата показан на рис, 4 [111]. В полимеризатор / емкостью около 10 непрерывно нодается свежий очищенный и высушенный этилен и предварительно приготовленный катализатор в низкокипящем бензине. Этилен подается [c.31]


Смотреть страницы где упоминается термин Технологическая производства полиэтилена: [c.358]    [c.403]    [c.96]    [c.17]    [c.243]    [c.19]    [c.225]    [c.173]   
Системный анализ процессов химической технологии (1986) -- [ c.159 ]




ПОИСК





Смотрите так же термины и статьи:

Краткие сведения и технологическая схема производства полиэтилена

Полиэтилен, производство

Радиационно-технологические процессы производства материалов и изделий из полиэтилена

Технологическая схема производства полиэтилена высокого давления

Технологический процесс производства листового полиэтилена

Технологический процесс производства пленки из полиэтилена низкой плотности



© 2025 chem21.info Реклама на сайте