Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Толуол, конденсация

    Головной погон колонны К- направляется на специальную установку для извлечения из него толуола. С верха колонны К-2 получается ксилольный концентрат, который после смешения с метанолом поступает на азеотропную ректификацию в К-3. С низа К-3 отбирается технический ксилол, а сверху — смесь ме-танола с бензином, не содержащим ксилолов, которая после конденсации и охлаждения смешивается с водой и направляется в экстрактор, а затем в отстойник для отделения метанола. Водный раствор метанола (50—60%-й) подвергают ректификации в колонне К-4. С верха колонны отбирают 98%-й метанол и возвращают его в процесс, а снизу — воду, содержащую до 12% метанола и далее ее направляют на смешение с дистиллятом колонны К-3 перед экстрактором. [c.247]


    Следовательно, вполне возможна конденсация толуола до дибензила, который, в свою очередь, может дать антрацен. Однако в присутствии алюмохромового катализатора дибензил, очевидно, не превращается в антрацен. Отсюда предполагается следующий механизм, основанный на характерном дегидрирующем действии данного катализатора  [c.99]

    Как и для бензола, водород снижал конденсацию толуола и частично пере- ВОДИЛ толуол в смесь бензола и метана (последняя реакция является обратимой). [c.344]

    Строение ароматических углеводородов оказывает существенное влияние на нагарообразование. С повышением молекулярного веса углеводорода и температуры его кипения влияние на нагарообразование, как правило, увеличивается. Следует полагать, что в процессе образования нагара в карбюраторном двигателе, испаряемость углеводородов приобретает решающее значение. Низкокипящие ароматические углеводороды (бензол и толуол), по-видимому, успевают испариться во впускной системе двигателя, и в предпламенных стадиях, находясь в паровой фазе, практически не подвергаются предварительному окислению, конденсации и уплотнению с последующим образованием углеродистых продуктов, составляющих нагар. Высококипящие ароматические углеводороды, долгое время оставаясь в жидкой фазе, под воздействием высоких температур претерпевают окислительные превращения и, очевидно, служат источником образования нагара. [c.273]

    Конденсация толуола и метанола на синтетических цеолитах с ионообменными катионами щелочных металлов  [c.321]

    На основании анализа продуктов реакции можпо предложить следующий механизм обнаруженной нами одностадийной конденсации толуола и [c.322]

    Конденсация толуола и метанола на синтетических цеолитах с ионообменными катионами щелочных металлов / Ю. Н. Сидоренко, П. Н. Галич, В. С. Гутыря, [c.369]

    Ясно, что при бнз=4 и выше можно устранить термодинамические ограничения на конверсию толуола. Именно к этому приему прибегают в промышленности (бн2>4), что позволяет подавить и побочные реакции конденсации. [c.313]

    Бензальдегид. . 100,0 88,6 Кислые вещества (2,8%, гл. обр. бензойная кислота), бензол (4,3%), толуол (45,1%), продукты конденсации, выкипающие при 114—254 С (36,4%) [c.193]

    Выделение ароматических углеводородов из нефтяных фракций может быть осуществлено также с помощью азеотропной ректификации. Бензол и толуол высокой степени чистоты могут быть выделены этим методом из смесей, содержащих непредельные и парафиновые углеводороды, с использованием в качестве разделяющих агентов ацетонитрила, метанола, этанола, изопропанола, ацетона, метилэтилкетона и уксусной кислоты [272]. Метанол был рекомендован также для выделения ксилолов [273]. Из числа указанных соединений наиболее эффективен, по-виднмому, ацетонитрил. В качестве разделяющего агента может применяться также пропионитрил [274]. В виде дистиллата отгоняются азеотропные смеси парафиновых углеводородов с нитрилами, расслаивающиеся после конденсации. Нижний слой, богатый нитрилом, возвращается в колонну в виде флегмы, а верхний слой, содержащий преимущественно парафиновые углеводороды, отбирается в качестве дистиллата, из которого углеводороды выделяются путем отгонки. [c.274]


    По фазовой диаграмме I—х—у можно определить температуры кипения и конденсации, а также равновесные составы жидкой и паровой фаз для бинарных смесей при постоянном давлении (рис. 43, ряды IV и V). На этой диаграмме в системе координат с в качестве ординаты н х, у ъ качестве абсциссы строят кривую кипения 1 и кривую конденсации 2, концы которых совпадают. На рис. 44 приведена диаграмма t—х—у для смеси бензол— толуол. Во всех точках, лежащих выше изобарной кривой конденсации 2, смесь находится полностью в парообразном состоянии. В точках, расположенных между кривыми 1 к 2, система состоит частично из жидкости и частично из паров, а ниже изобарной кривой кипения 1 существует только жидкость. [c.75]

    Предположим, что нагревается смесь состава х . При температуре 1 она начинает кипеть, при этом паровая фаза имеет состав у. Жидкая фаза Хд находится в равновесии с паровой фазой у при температуре /. Изобарные кривые кипения и конденсации определяют экспериментально так же, как и кривую равновесия (см. разд. 4.6.З.). Диаграмму t—х—у как и диаграмму равновесия у—х можно использовать для определения требуемого числа теоретических ступеней разделения. На рис. 59 (см. разд. 4.7) изображена кривая равновесия для смеси бензол— толуол, построенная на основе изобарных кривых кипения и конденсации. Точки Л и В лежат в этом случае одна под другой. Диаграмма 1—х—у имеет то преимущество, что в процессе перегонки можно по температуре в головке колонны определять концентрацию головного продукта. При работе с тарельчатыми колоннами эта диаграмма позволяет проводить текущий контроль состава смеси на тарелках по перепаду температуры в колонне. По температурам на тарелках можно установить оптимальную тарелку питания и тарелку для отбора промежуточного продукта. [c.75]

    Конденсацию низкомолекулярных полимеров с малеиновым ангидридом проводили в атмосфере азота при 200—205°С в течение 8—10 ч с последующей отгонкой избытка малеинового ангидрида. Продукт реакции растворяли в толуоле и отфильтровывали или центрифугировали. Полученные производные янтарного ангидрида затем обрабатывали аминами в растворе толуола при непрерывной отгонке воды,. выделяющейся во время реакции. В качестве аминов использовали аллиламин, этилендиамин и различные полиэтиленполиамины. В присадке ИХП-476 содержится [c.93]

    Содержание высших продуктов конденсации в общем количестве оксопродуктов в опытах с толуолом составило 1%. [c.168]

Рис. 1.10. Изобарные кривые кипения и конденсации и днаграмма // — х для системы бензол — толуол при р = 700 мм. Рис. 1.10. <a href="/info/1571986">Изобарные кривые кипения</a> и конденсации и днаграмма // — х для <a href="/info/49789">системы бензол</a> — толуол при р = 700 мм.
    При конденсации толуола при А/ = 55 -ь 72° С н = = 65 000 ккал м час а = 9401200 ккал мЧас °С по Нуссельту а=1220 ккал1м" час °С. [c.94]

    OM 1 и прокачивается через систему теплообменников Т-14, Т-9 и Т-8, в которых нагревается до 97—100° за счет тепла конденсации паров растворителя и тепла масла, отходящего с установки, п поступает в колонну I стунепп отгона К-1 (давление 0,7 ати, температура отходящих паров 93—95°). Остаток с низа колонны проходит паровой подогреватель Т-6, в котором нагревается до 150—155°, и поступает в колонну II ступени отгона К-2. В колонне К-2 растворитель отгоняют при повышенном давлении (2—2,5 ати). Это делают, с одной стороны, для уменьшения размеров колонны и, с другой, — для повышения температуры паров растворителя и большей эффективности использования их как теплоносителя в теплообменнике Т-8. Температура паров растворителя, уходящего из колонны К-2, составляет 130—140°. В колоннах К-1 и К-2 от раствора отгоняется основная масса ацетона, значительная часть бензола и некоторая доля толуола. [c.242]

    Бтио/з-бутилбензол готовился в большом количестве конденсацией бутена-2 с бензолом в автоклаве (нагретом до 150 в теченне 12 час.) в присутствии таблетированного катализатора, содержавшего адсорбированную фосфорную кислоту (твердый фосфорнокислый катализатор). Отношение беизола к бутену-2 равнялось 2,5 1 выход неочищенного ето/ -бутилбензола в среднем составлял 70 %i или 45% после перегонки и доведения его до 98—99 %-ной степени чистоты. Тот же катализатор оказался пригодным для конденсации этилена с толуолом при температуре 275° и давлении 35—91 ат при этом получалась смссь этилтолуолов (выход 63%). Состав смеси полностью ие определялся, но было найдено, что в ней содержалось около 50% о /гео-изомера. Фосфорная кислота непригодна в качестве катализатора для приготовления [c.481]

    В последние годы с развитием каталитического крекинга выяснилось., что некоторые катализаторы способствуют конденсации ароматических углеводородов. Так, Матокс и Гроссе [25] нашли, что толуол, пропущенный над алюмохромовым катализатором при 550° С, дает 1% антрацена за проход на 16% разложившегося толуола, и что при этом не получается фенантрен. При термическом крекинге дибензила обычно получается антрацен, однако в контакте с алюмохромовым катализатором были получены не антрацен, а стильбен, толуол и бензол. Тем не менее, большое отложение углерода порядка 14,5% показывает наличие ароматической конденсации обычного типа. [c.99]


    Герпдон и РейдД19] установили, что метил-, этил- и ти/)епг-бутил-бензол и 1,1-дифенилэтан почти полностью разлагаются, если их нагревать до 525° С в течение iO часов. Пиз и Мортон [35], исследуя пиролиз пяти простых производных бензола при 600° С, расположили их согласно относительным объемам полученного газа в следующем порядке термической стабильности ор/ио-ксилол, толуол, бензол, мета-ксилол, этилбензол. По данным других исследователей, в интервале температур от 700 до 770° С наиболее стабильным из трех ксилолов является метаксилол, в то время как ортгео-ксилол дает наибольшее количество продуктов конденсации. [c.104]

    Примерами межмолекулярной конденсации с участием алкилгрупп являются пиролиз толуола, этилбензола, бензола с этиленом и подобными соединениями, приэтом получаютсяполициклические ароматические углеводороды, такие, как антрацен и фенантрен. Выходы их обычно незначительны. [c.108]

    Третий тип конденсации (межмолекулярная конденсация, затрагивающая ароматическое ядро) уже описан выше, как одна из наиболее важных реакций незамещенных ароматических углеводородов. Подобная конденсация имеет место и в случае алкилированных ароматических углеводородов. Так, толуол среди прочих продуктов реакции дает дито-лил. Как правило, для реакций этого типа требуются более высокие тем- [c.108]

    В другом паправлении велись исследования по решению этой задачи ц Англии 129] а именно через реакцию конденсации хлорированного нефтяного парафина с ароматическими углеводородами. Так как парафин пе подвергался крекингу, то можно присоединить более длинные боковые цени, п результате чего получаются масла более высокой вязкости. При пспользовапии в качестве ароматического углеводорода нафталина получаются масла исключительно большой вязкости и с высокой температурой застывания. Если же берут такие ароматические углеводороды, как бензол и толуол, то образуются масла со средними значениями вязкости. [c.512]

    Простейшие ароматические углеводороды устойчивы при низких температурах крекинга и межмолекулярная конденсация с потерей водорода начинается нрп температурах выше 500° С бензол, в частности, превращается в дифенил, аналогичные продукты образуются при удвоении молекул толуола, ксилола и нафталина [59, 60]. Для большинства углеводородов термическая стабильность уменьшается с увеличением размеров молекулы нафталин образует динафтил при 475° С, антрацен при той же температуре разлагается с образованием твердых коксоподобных продуктов, у пндена такой распад протекает уже при 290° С. [c.302]

    Наконец Мейер с сотрудниками выделил в больших количествах продукты конденсации ацетилена и обнаружил в них гексилен, бензол, толуол, орто-, мета-и параксилол, стирол, исевдокумоот, мез]1тилен, ииден, гидринден, нафталин, гидронафталин, а- и Э-метил-нафталины, 1,4-диметилнафталин, аценафтен, флуо-рен, антрацен, фенантрен, пирен, хризвн и т. д. [c.250]

    Смесь толуол-азот подвергалась конденсации при 550°. При этом получался стильбен и вероятно дитолил. [c.344]

    Совместно с П. И. Галичем и с участием О. Д. Коповальчикова и Ю. Н. Сидоренко исследованы реакции алкилирования метилзамещенных ароматических углеводородов метиловым спиртом па цеолитах типа фожазитов и ионообменными катионами щелочных и щелочноземельных металлов. Выявлено принципиальное различие превращений углеводородов в присутствии аморфных и кристаллических алюмосиликатов с катионами I и II групп. В присутствии аморфных алюмосиликатов и цеолитов типа X и с катионами щелочноземельных металлов, а также лития и натрия алкилирование толуола, ксилолов и метилнафталинов метанолом происходит в ароматическое ядро с образованием соответствующих полиметилбензолов и нафталинов различного изомерного состава. Те же цеолиты с катионами калия, рубидия и цезия селективно метилируют боковую цепь, и получаются соответствующие этил-и винилзамещенные ароматические углеводороды. Эта неизвестная ранее реакция может служить новым общим методом одностадийного получения этил- и винилзамещенных ароматических соединений путем конденсации метилзамещенных ароматических углеводородов и метанола. [c.14]

    В работе [11 показано, что конденсация толуола и метанола иа цеолитах типа X с ионообменными катионами калия и рубидия п])Иводит к получению винил- и этилбензола. Потому представлялось целесообразным выяснить возможность проведения этой реакции иа ближайших гомологах толуола — ксилолах. [c.326]

    При взаимодействии циклопентадиена с кетонами при комнатной температуре в течение 2 ч в ТГФ в присутствии порошкообразного гидроксида калия и каталитических количеств 18-крауна-б получают фульвены с выходом 17—54% [1515]. В нескольких сообщениях [1222] описана конденсация пиперо-наля с пиперидидом кротоновой кислоты в ДМСО при использовании 50%-ного гидроксида калия и ТЭБА. При дальнейшем изучении установлено, что реакции, приведенные на схеме 3.107, можно осуществить с очень высоким выходом (до 97%), если проводить их в кипящем толуоле в присутствии безводного карбоната калия и аликвата 336. В этих случаях R должен быть, ароматическим остатком или третичным алкилом [1613]. [c.229]

    К оптически активным эпоксидам привела конденсация п-хлорбензальдегида с фенацилхлоридом в системе толуол/ /10%-ный NaOH в присутствии бензилхининийхлорида при перемешивании в течение 3 ч [951]  [c.235]

    Конденсация альдольного типа, основание — карбонат калия. Смесь 0,1 моля анисового альдегида, 0,1 моля пиперидида сор-биновой кислоты, 1,0 г аликвата 336 и 4,0 г сухого К2СО3 в 30 мл толуола нагревают при 90 С в течение 10 ч. Реакционную смесь обрабатывают 50 мл воды, слои разделяют, водный слой дополнительно экстрагируют дихлорметаном. Объединенный органический экстракт сушат и концентрируют на роторном испарителе. Остаток обрабатывают 10—20 мл эфира и затем осторожно добавляют петролейный эфир и оставляют кристаллизоваться на холоду. Аликват остается в растворе. Пиперидид 7- (4-меток-сифенил)гептатриен-2,4,6-овой кислоты (т. пл. 133 С) получается с выходом 63% [1613]. [c.237]

    В упомянутых в этой главе работах, как правило, используются восстанавливающие реагенты в гомогенной среде. Мацуда и Коида [539] восстанавливали кетоны в кипящем ксилоле или толуоле в присутствии эквимольных количеств катализаторов, что способствовало увеличению растворимости. В качестве катализаторов использовали диглим, диметоксиэтан и дибензо-18-краун-6. Последний из них приводит к лучщим результатам, однако вследствие протекания побочных реакций конденсации выходы целевых продуктов посредственные. [c.372]

    Главным продуктом превращения бензальдегида является толуол, частично деметплирующийся в бензол. Однако одновременно протекают реакции конденсации и реакция Тищенко — Канниццаро, приводящая к бензойной кислоте и бензиловому спирту. Оба эти вещества, особенно бензиловый сиирт, очевидно, быстро восстанавливаются. [c.194]


Смотреть страницы где упоминается термин Толуол, конденсация: [c.8]    [c.240]    [c.442]    [c.126]    [c.14]    [c.321]    [c.323]    [c.329]    [c.329]    [c.261]    [c.10]    [c.364]    [c.707]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте