Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды ароматические строение химическое

    Углеводороды нафтенового ряда характеризуются кольчатым строением, сближающим их в структурном отношений с углеводородами ароматическими. По химическим свойствам нафтены очень близки к соответствующей группе жирных углеводородов, именно к углеводородам парафинового ряда, благодаря чему они иногда [c.80]

    В тех случаях, когда давление технологического лара на установке недостаточно, применяют конденсат, который после пароперегревателя вводят в поток сырья. Место ввода турбу-лизатора определяется главным образом химическим составом сырья, поступающего на нагрев, и его реакционной способностью. Наименьшей термической прочностью, как было показано выше, обладают углеводороды алифатического строения, к которым в первую очередь следует отнести парафины нормального и изостроения, затем длинные алифатические цепочки в молекулах нафтеновых и ароматических органических соединений сложного гибридного строения. [c.98]


    Основными компонентами нефтяных масел являются углеводороды смешанного строения, содержащие одновременно структурные элементы нафтено-парафинового, парафино-ароматического или парафино-нафтено-ароматического характера. Углеводородов, содержащих только нафтеновые или ароматические циклы и лишенные боковых алкильных цепей, в маслах практически нет. Отсутствуют в товарных маслах и нормальные парафиновые углеводороды, так как при производстве масел обычно применяется глубокая депарафинизацня. Кроме углеводородов в маслах имеются и разнообразные гетероорганические соединения, содержащие серу, кислород, азот, а также различные металлы. Все это вносит большую сложность в изучение зависимости эксплуатационных свойств масел (в том числе и стабильности против окисления) от их химического состава. [c.65]

    Химический состав сырья при заданных условиях процесса определяет также выход водорода при риформинге. Чем меньше парафинов в сырье, тем выход водорода выше, так как снижается его потребление на реакции гидрокрекинга. Для получения катализата с заданным содержанием ароматических углеводородов из фракций данного бензина нужны тем менее жесткие условия риформинга, чем выше интервал кипения фракции, так как с увеличением числа углеродных атомов в углеводородах данного строения растут и термодинамически возможный выход ароматических углеводородов, и скорость ароматизации. Содержащиеся в сырье ароматические углеводороды ограничивают термодинамически воз- [c.256]

    Все эти газообразные, жидкие и твердые углеводороды в зависимости от строения молекул подразделяются на три основных класса — парафиновые, нафтеновые и ароматические. Значительную часть нефти составляют углеводороды смешанного строения, содержащие структурные элементы всех трех упомянутых классов. Строение молекул углеводородов определяет их химические и физические свойства. [c.233]

    Величина индукционного периода дизельного топлива зависит от его химического состава. Способностью быстро самовоспламеняться обладают парафиновые углеводороды нормального строения алканы изостроения, цикланы, непредельные и особенно ароматические обладают низкими цетановыми числами. [c.41]

    Бензин имеет плотность 0,72—0,77, октановое число по исследовательскому методу от 87 до 91. По химическому составу бензин каталитического крекинга отличается от прямогонных бензинов и бензинов термических процессов. В нем содержится 9— 10% (масс.) непредельных углеводородов и от 20 до 40% (масс.) ароматических углеводородов. Непредельные и парафиновые углеводороды не менее, чем на две трети состоят из углеводородов изомерного строения. [c.230]


    Вязкость масел и пологость кривой вязкости также до известной степени объясняются наличием и концентрацией ароматических углеводородов различного строения. Наконец, следует отметить, что развитие нефтехимической промышленности немыслимо без детального знания химического состава нефтяного сырья. [c.476]

    Одновременно с дальнейшим развитием производства моторных топлив и масел с каждым годом будет повышаться удельный вес использования нефти как химического сырья. В настоящее время сырьем для производства химических продуктов служат почти исключительно газы нефтеперерабатывающих заводов и твердые парафины. Однако нетрудно предвидеть, что уже в ближайшие годы значительно усилится тенденция к использованию в качестве химического сырья индивидуальных соединений (прежде всего углеводородов) и близких по химическому строению групп соединений, выделенных из различных частей нефти (бензиновой, керосиновой, масляной и др.). Содержащиеся в нефтях парафиновые, циклопарафиновые и ароматические углеводороды различного строения и моле-лярного веса послужат в будущем ценным сырьем для синтеза химических веществ различного технического, медицинского и культурно-бытового назначения. Содержащиеся в нефти и нефтепродуктах сернистые соединения, создающие в настоящее время много трудностей и осложнений при переработке нефти и использовании нефтепродуктов, несомненно, станут в будущем ценнейшим и уникальным сырьем для синтеза сложных серусодержащих органических соединений. [c.8]

    Дальнейшие исследования условий и направлений химических превращений высокомолекулярной части нефтей позволят не только более глубоко познать природу углеводородов гибридного строения, в которых значительный удельный вес составляют ароматические структурные звенья, и оценить канцерогенную активность таких соединений, присутствующих в сырых нефтях, но и наметить наиболее рациональные пути химического использования и переработки этого ценного сырья. Появится возможность точно определить в химико-технологических схемах переработки тяжелых нефтей те звенья, в которых наиболее интенсивно идет образование высококонденсированных полициклических ароматических структур, являющихся основными носителями канцерогенной активности нефтепродуктов. [c.297]

    Растворимость воды в углеводородах, топливах и маслах мала и определяется химическим составом продукта, температурой и влажностью окружающей среды. Наибольшей растворяющей способностью обладают непредельные и ароматические углеводороды, наименьшей — парафиновые углеводороды нормального строения. С повышением молекулярного веса углеводородов одного гомологического ряда растворимость в них воды падает [22, 24, 25]. [c.534]

    Все низшие парафины до пентанов включительно можно отделить друг от друга фракционированной разгонкой. В случае углеводородов с шестью или более атомами углерода число изомеров быстро увеличивается с увеличением молекулярного веса ввиду этого, а также в связи с присутствием среди углеводородов с шестью и более атомами углерода, помимо парафинов, также нафтеновых и ароматических углеводородов простая перегонка становится неэффективной. Следует особо подчеркнуть, что выделение высших членов гомологических рядов углеводородов простыми физическими средствами почти невозможно из-за большого числа изомеров. Таким образом, углеводороды сложного строения приходится синтезировать из более простых это одна из причин, определяющих важное значение низших парафинов и олефинов для промышленности химической переработки нефти. [c.33]

    Поскольку углеводороды изостроения и ароматические углеводороды характеризуются высокими октановыми числами, удаление углеводородов нормального строения из автомобильных бензинов открывает возможность производства высокосортных топлив. Такое разделение в сочетании с химическим превращением углеводородов нормального строения в высокооктановые соединения при помощи каталитических процессов открывает возможность повышения октанового числа суммарного фонда бензина, требуемого в связи с непрерывным совершенствованием карбюраторных двигателей. [c.90]

    В настоящее время парафиновые углеводороды с прямой цепью выделяют из нефти и ее фракций при помощи мочевины. Как наблюдал впервые в Германии Ф. Бенген [10], мочевина (карбамид) дает с к-парафинами кристаллические аддукты, в то время как разветвленные парафиновые углеводороды, а также нафтеновые и ароматические этой способностью не обладают. Эти аддукты могут быть отделены от жидкой фазы фильтрованием или центрифугированием, промыты подходящим растворителем, а затем разрушены горячей водой. В результате отделяется маслообразная смесь парафиновых углеводородов нормального строения. Так как аддукты образуются только с нормальными парафинами, а изопарафины, имеющие в общем меньшее значение для дальнейшей химической переработки, одновременно отделяются, то этот новый способ с точки зрения химической переработки содержащихся в нефтях парафинов приобретает еще большее значение. [c.20]


    Так, на силикагеле количественно выделяют ароматические, а также непредельные углеводороды из их смесей с парафинами и нафтенами [4, 6—8]. Этим методом широко пользуются в исследованиях химического состава бензинов [7, 9]. Хроматография с помощью силикагеля дала возможность разрешить проблему очистки индивидуальных углеводородов различного строения, потребность в которых становится весьма насущной для химических и физических исследований и в особенности для спектроскопии. К наиболее трудным видам очистки относятся удаление следов воды и примесей углеводородов, освобождение ароматических углеводородов от примесей парафинов и наф-тенов, а также разделение смесей некоторых изомерных углеводородов. Образцы нафтеновых и парафиновых углеводородов, очищенные с помощью хроматографии на силикагеле, могут быть предназначены для определения физических констант и спектральных исследований [7]. [c.6]

    Результаты проведенных опытов показали, что в присутствии растворителей и алюмосиликата возможно перевести в растворимое состояние до 60% керогена, причем полученная смола отличается низким содержанием фенолов и других кислородных соединений, а также непредельных соединений. Фракционный состав полученной смолы указывает на содержание как легких, так и тяжелых фракций. Метановые, нафтеновые углеводороды простого строения содержатся в легких фракциях, высшие же фракции содержат почти исключительно гибридные углеводороды полициклического строения. Таким образом, полученные из керогена продукты по физическим и химическим свойствам близки к природным ароматическим нефтям  [c.12]

    Химический состав оказывает значительное влияние на эксплуатационные характеристики топлив для ВРД. Некоторые классы углеводородов, такие, как ароматические, парафиновые нормального строения и непредельные, отрицательно влияют на некоторые характеристики двигателя и качество топлива. Повышенное содержание ароматических углеводородов увеличивает нагарообразующую способность топлива, парафиновые углеводороды нормального строения повышают температуру кристаллизации, непредельные углеводороды снижают стабильность топлива в условиях хранения. Вследствие [c.498]

    Антидетонационные свойства бензинов обусловливаются в основном их химическим составом. Как известно, нефтяные бензиновые фракции состоят из трех основных групп углеводородов парафиновых и изопарафиновых, нафтеновых и ароматических. Наименьшим октановым числом обладают парафиновые углеводороды нормального строения, наибольшим — изопарафиновые и ароматические, а нафтеновые углеводороды занимают промежуточное положение. [c.5]

    Кроме углеводородов основных групп, содержащихся в авиационных бензинах и рассмотренных выше, в автомобильных бензинах имеется значительное количество (иногда до 50%) непредельных углеводородов различного строения. Наряду с этим в них содержатся сравнительно более высококипящие ароматические, нафтеновые и парафиновые углеводороды. Соотношение углеводородов основных химических групп также значительно отличается от соотношения их в авиационных бензинах и обусловлено главным образом долей продуктов крекинга и риформинга, вовлеченных в бензин. [c.11]

    Наибольший интерес с точки зрения склонности бензинов к химическим изменениям представляют содержащиеся в них непредельные углеводороды. Количество их даже в товарных автомобильных бензинах, представляющих собой смеси с бензинами прямой перегонки, достигает 30—50%. В основном непредельные углеводороды автомобильных бензинов представлены моноолефинами нормального и разветвленного строения значительно в некоторых бензинах и содержание циклоолефинов с пяти- и шестичленными кольцами. В различных бензинах крекинга, особенно в высших их фракциях, присутствуют весьма реакционноснособные ароматические углеводороды с двойной связью в боковой цепи, которые входят и в товарные бензины. Еще более активные углеводороды — диеновые с сопряженной двойной связью содержатся в бензинах в меньших количествах. Содержание (в %) непредельных углеводородов различного строения в бензинах термического и каталитического крекинга иллюстрируется следующими данными  [c.13]

    Товарные авиационные керосины почти на 90% состоят из фракций нефти, выкипающих выше 150—175° С, и в некоторых из них содержится более 10% высокомолекулярных углеводородов, в том числе с температурой кипения выше 250° С, а топлива Т-5 и Т- почти целиком состоят из углеводородов с пределами выкипания 200—320° С. Поэтому в реактивных топливах некоторых сортов в отличие от бензинов могут содержаться углеводороды сложного строения бициклические, в том числе с конденсированными кольцами, моноциклические с длинными боковыми цепями, нафтеноароматические, а также небольшое количество трициклических углеводородов нафтенового и ароматического ряда. Определение групп углеводородов в таких топливах сопряжено со значительными трудностями и, кроме того, дает очень приблизительное представление о составе топлив, поскольку углеводороды сложного строения не имеют свойств, характерных для определенной химической группы, например парафиновых или ароматических, а наделены свойствами, присущими как тем, так и другим углеводородам. В связи с этим углеводородный состав керосино-газойлевых топлив характеризуют не только содержанием отдельных групп углеводородов, но и структурным составом, позволяющим представить соотношение циклов и парафиновых цепей в средней молекуле топлива, а также относительное содержание ароматических и нафтеновых колец. [c.15]

    Разделение смол селективными растворителями не является удовлетворительным методом их химической классификации. Элементарные составы разделенных этим способом фракций смол мало отличаются друг от друга. Полученные таким путем нейтральные смолы образуют с нефтепродуктами истинные растворы. Асфальтены дают в этих же условиях коллоидные растворы или суспензии. Они лиофильны по отношению к ароматическим углеводородам и лиофобны по отношению к углеводородам алифатического строения. Степень дисперсности асфальтенов зависит от химического состава углеводородной смеси. [c.150]

    Иногда работа карбюраторного двигателя сопровождается гром-кп.м стуком и другими неполадками, называемыми детонацией. Детонация приводит к перегреву двигателя, снргжению его мощности, разрушению деталей шатунно-поршневой группы и т. д. Причиной детонации могут быть различные факторы, связанные с химическим составом топлива, конструктивными особенностями д] игателя, степенью ся<атия и т. д. Из жидких углеводородов, входящих в состав бензинов, наибольшей способностью вызывать детонацию обладают парафиновые углеводороды нормального строения. Парафиновые углеводороды изостроения и ароматические углеводороды, наоборот, характеризуются наивысшей антидетонадионной способностью, нафтены и олефины занимают промежуточное положение. [c.101]

    Как известно, различные нефти и выделеннме из них соответствующие фракции отличаются друг от друга физико-химическими и товарными свойствами. Так, бензиновые фракции некоторых нефтей характеризуются высокой концентрацией ароматических, нафтеновых или изопарафиновых углеводородов и поэтому имеют высокие октановые числа, тогда как бензиновые фракции других нефтей содержат в значительных количествах парафиновые углеводороды нормального строения и имеют очень низкие октановые числа. [c.196]

    Бензиновые фракции разных нефтей различаются по фракционному и групповому химическому составу. Чаще всего они содержат 60-70 парафиновых, 10% ароматических и 20-30% шести- и пятичленных нафтеновых углеводородов. Среди парафиновых преобладают углеводороды нормального строения и монометилзамещенные. Нафтены представлены преимущественно алкил-гомологами цикло-гексана и циклопентана, ароматические- алкилбензолами. Такой состав обусловливает низкое октановое число исходного бензина, оЬычно не превышающее 50 пунктов (М.М.) (табл. 6.1). [c.135]

    Подтверждается уже отмеченная выше закономерность, что в па-рафинистых нефтях наиболее богаты предельными углеводородами нормального строения фракции С20—Сз с повышением молекулярных весов возрастает доля разветвленных структур парафинов. В наиболее высокомолекулярной части парафинов в зависимости от химической природы нефти содержатся уже большие или меньшие количества гибридных форм, т. е. парафины, в прямой углеродной цепи которых один или несколько атомов водорода замещены циклическими элементами структуры (полиметиленовые или ароматические ядра). Изменение соотношения парафинов нормального и разветвленного строения в различных фракциях парафина из туймазинской нефти но мере увеличения их молекулярного веса хорошо [c.96]

    Избирательное каталитическое гидрирование особенно широко применяется для доказательства строения сераорганических соединений ряда бензтиофена и дибензтиофена. Наиболее часто используют для этих целей скелетный никелевый катализатор (A i Ренея) при низких температурах (50—150° С) [106 1. В этих условиях удается практически полностью осуществить разрыв связей С—S с последующим связыванием никелем серы, выделяющейся в виде сероводорода. В большей или меньшей степени идет при этом и насыщение водородом двойных связей в ароматических кольцах, но сравнительно мало затрагиваются простые связи С—С. Следовательно, нрп избирательном каталитическом гидрировании сернистых соединений происходит отщепление атома серы при сохраненип углеродного скелета исходных молекул, т. е. осуществляется переход от сераорганических соединений к соответствующим углеводородам. Установление строения полученных в этих условиях углеводородов является поэтому прямым ответом на вопрос о химической природе содержащихся в нефти сернистых соединений. Чем ниже температура гидрирования и продолжительность процесса, тем меньше задеваются двойные связи в бензольных кольцах. [c.417]

    Жидкие парафиновые углеводороды нормального строения обладают весьма низкими октановыми числами и являются с этой точки зрения неудовлетворительными компонентами авто- или авиагорючего. Повышение октановых чисел нормальных парафиновых углеводородов может быть осуществлено, помимо изомеризации, разбираемой в другом месте, путем циклизации их и превращения в ароматические углеводороды, обладающих весьма высокими октановыми числами. Некоторые ароматические углеводороды являются также важным исходным сырьем для целого ряда химических производств. Поэтому превращение доступных и дешевых парафинов в ароматические углеводороды является задачей, имеющей большое промышленное значение. Аналогичное значение имеет и превращение в ароматику нафтеновых углеводородов. [c.239]

    Бензины различного химического состава по-разному относятся к добавке ТЭС, т. е. обладают, как говорят, различной приемистостью к ТЭС. Приемистость к ТЭС оценивается числом единиц, на которое увеличивается октановое число данного топлива или углеводорода при добавлении определенного количества ТЭС по сравнению с октановым числом этого топлива в чистом виде, т, е, без антидетонатора. Наибольшая приемистость к ТЭС у парафиновых углеводородов нормального строения, наименьшая — у непредельных и ароматических углеводоров. [c.86]

    К ароматическим системам обычно относят ненасыщенные циклические соединения, которые характеризуются высокой термодинамической стабильностью, сравнительной легкостью образования, преимущественным протеканием реакций замещения, а не присоединения по кратным связям, плоским или почти плоским строением молекул Г 130]. Иногда используют следу ющее определение ароматическими называют углеводороды, которые по химическому поведению подобны бензолу [131]. Наличие корректного критерия ароматичности дало бы возможность, с одной стороны, провести детальную классификацию углеводородов, а с другой — использовать этот критерий для прогнозирования химических свойств. [c.57]

    Теплотворность моторных топлив, как следует из формул (2-15) и (2-19), а также по экспериментальным данным, тем выше, чем больше отношение Нт/Ст, т. е. чем меньше в топливе ароматических углеводородов. Следует отметить, что влияние химического состава на теплотворность топлива ослабевает при утяжелении угле-водородой. Изомерные углеводороды по сравнению с углеводородами нормального строения имеют более низкую теплотворность ее уменьшение может достигать приближенно 8 ООО ккал кг-моль, т. е. составлять меньше 1 % теплотворности соответствующего углеводорода нормального строения. [c.173]

    В соответствии с изложенным, мы проводили исследования в двух направлениях. Первое заключалось в систематическом изучении процессов разделения нефтяных фракций я искусственных смесей углеводородов с применением высокоэффективных адсорбентов молекулярных сит и реакции комнлексообразования с тиомочевиной в сочетании с другими методами разделения. В нашу задачу входило, с одной стороны, разработка методов и условий выделения из фракций нефти некоторых индивидуаль-цых нафтеновых углеводародов, их смесей, аяканов нормальио-го строения и ароматических углеводородов, являющихся ценным химическим сырьем, а с другой — получение углеводородных смесей, представляющих собой высококачественные компоненты топлив для моторных и реактивных двигателей. Второе направление заключалось в изучении термокаталитических превращений индивидуальных углеводородов и, их смесей, выделенных из нефти на синтетических цеолитах различных форм и структуры, природных и активированных алюмосиликатах, а также на промышленном алюмосиликатном катализаторе. [c.6]

    Ниже весьма кратко рассмотрены некоторые селективные процессы (например, каталитический риформинг, полимеризация, гидрирование, алкилирование и др.) в настоящее время они не используются для получения реактивных и дизельных топлив, но служат для получения однотипных по химическому строению углеводородов — изоалканов и ароматических углеводородов, которые гидрированием могут быть превращены в соответствующие цикланоБые углеводороды. Имеются основания считать, что перспективные реактивные и дизельные топлива улучшенного качества будут в значительной степени состоять из углеводородов определенного строения. Описываемые же процессы могут оказаться более или менее удовлетворительными источниками их получения. По мере увеличения потребления фракций с углеводородами заданного строения процессы получения таких фракций будут совершенствоваться и заменяться новыми, более эффективными. [c.12]

    В присутствии кислорода радиационное разложение ускоряется. п-Терфенил — один из наиболее радиационностойких полифенилов. При дозе излучения 2-102 эв/г (3,2-10 Мрад) и нагреве до 400 °С он остается еще незакоксованным , хотя на 30% превращается в полимер. Добавление ароматических углеводородов к облучаемым смесям углеводородов иного строения оказывает влияние на стадию инициирования химической реакции смеси. Так, [c.173]

    Удельный вес отдельных погонов нефти зависит от их химического группового состава и особенностей -строения входящих в них углеводородов. Ароматические углеводороды обладают наибольшей плотностью, метановые — наименьшей. Нафтеновые занимают промежуточное положение. При разветвлении молекул метановых углеводородов их плотность уменьшается. Следовательно, бензины и керосины, богатые ароматическими углеводородами, например, выделенные из чусовской нефти, значительно тяжелее бензинов и керосинов из таких типично метановых нефтей, как южно-искинская илп грозненская. [c.69]


Смотреть страницы где упоминается термин Углеводороды ароматические строение химическое: [c.9]    [c.25]    [c.38]    [c.24]    [c.9]    [c.136]    [c.216]    [c.220]    [c.682]    [c.25]    [c.22]   
Сочинения Введение к полному изучению органической химии Том 2 (1953) -- [ c.489 ]




ПОИСК





Смотрите так же термины и статьи:

Строение химическое



© 2025 chem21.info Реклама на сайте