Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклопропан напряжение в цикле

    Значительное тепловыделение при полимеризации приводит к тому, что в большом температурном интервале ДОм отрицательно, т. е. термодинамические ограничения отсутствуют. Для анализа влияния температуры на термодинамическую вероятность проведения полимеризации сопоставляют знаки величин ДЯм и Д5м. Для большинства полимеризационных процессов ДЯм и Д5м отрицательны (см. табл. 67). Следовательно, такие процессы возможны при температурах ниже некоторой предельной. Исключением является полимеризация циклических углеводородов с напряженным циклом (циклопропан), для которых Д5м>0. Для таких систем понятие 7 пр теряет смысл. [c.266]


    Напряженность цикла. В циклических соединениях валентные углы С—С-связей часто существенно отличаются от нормального для тетраэдрической структуры угла в 110°. Такие циклы, как циклопропан и циклобутан, напряжены. Это приводит к их повы-щенной реакционной способности в реакциях с раскрытием цикла. [c.134]

    Этиленоксид — низкокипящее вещество (т. кип. +11 °С) с эфирным запахом. В отличие от ациклических простых эфиров он очень реакционноспособен. Это объясняется большой напряженностью цикла (как в циклопропане). Атака как нуклеофильных, так и электрофильных агентов приводит к разрыву связи С—О  [c.310]

    Важно уяснить, что при оценке напряжения по теплотам сгорания на СНг-группу принимают, что прочность связи С — Н одинакова независимо от п. Суш ествуют, однако, экспериментальные данные, свидетельствующие о том, что в действительности каждая из С — Н-связей этилена и циклопропана на 3 — 4 ккал прочнее, чем в алканах (см. стр. 80—82). Ясно, что такое превышение обычной прочности этих связей приведет к тому, что энергия напряжения будет казаться меньше, чем она есть на самом деле. Если принять, что связи С — Н на 0,5 ккал прочнее в циклобутане, на 3,0 ккал прочнее в циклопропане и на 4,0 ккал прочнее в этилене, то можно внести соответствующие исправления в энергии напряжения циклов углеродных атомов. В таком случае для циклобутана напряжение, связанное с валентными углами, будет равно 0,5 8 -Ь 26,4 = 30,4 ккал для циклопропана 3,0 6 -Ь 27,6 = 45,6 ккал-, для этилена 4,0 4 -Ь 22,4 = = 38,4 ккал. Эти данные обнаруживают легко объяснимые различия в напряжении для циклопропана и циклобутана, однако этилен при этом все еще оказывается особым случаем, как, по-видимому, и должно быть, если учесть и другие его особые свойства (гл. 6). [c.111]

    Напряжение цикла в циклопропане, изменяя распределение электронной плотности, приводит к дополнительной энергии взаимодействия с [c.40]

    Геометрия расположения заместителей при атоме углерода, находящегося в данном валентном состоянии, определяется гибридизацией его электронных орбит. Например, насыщенный 5р -атом углерода имеет тетраэдрическую систему валентностей, а олефиновый зр -атом углерода — плоскую тригональную конфигурацию. Любые изменения в валентных углах, вызванные стерическими напряжениями, приводят к некоторому перераспределению вкладов 5- и р-орбит в отдельные связи. з-Орбиты являются сферическими и, вообще говоря, меньше, чем р-орбиты, обладающие цилиндрической симметрией, так что изменения в их соотношении при гибридизации приводят к изменениям длин отдельных связей и вызывают изменения частот колебаний. Поскольку олефиновый атом углерода имеет только одну 5-орбиту и две р-орбиты, способные гибридизоваться, то усиление 5-характера одной связи должно компенсироваться усилением р-характера другой связи. Простым примером, иллюстрирующим это положение, служит циклопропан, у которого валентные углы углерода с естественной тетраэдрической направленностью связей уменьшены вследствие напряжения цикла. Это означает, что несколько увеличивается кратность связей С — С, а у связей С — Н больше проявляется з-характер, вследствие чего они становятся более короткими и частоты их колебаний повышаются до 3030 см . [c.546]


    Различия в поведении первых двух представителей циклопарафинов от остальных их представителей объясняются теорией напряжения Байера (стр. 207). Угол между направлениями сил химического сродства в циклопропане равен 60° (как угол в равностороннем треугольнике), т. е. очень сильно отличается от обычного угла — 109°28. Валентные углы в циклобутане, если представить его молекулу лежащей в одной плоскости, равны 90° (как углы в квадрате). Большое отклонение от нормальных углов обусловливает напряжение циклов и легкость их разрыва. Валентные углы в циклопентане и циклогексане гораздо ближе к обычному углу — 109°28, вследствие чего здесь напряжение гораздо меньше и кольца циклопентана и циклогексана являются наиболее прочными. [c.495]

    О2, S2, Se2, циклопропан и напряженные циклы , эпоксиды , 1,3-диполи [c.279]

    В четырехчленных циклах также имеется угловое напряжение [211], но намного меньшее, и они труднее поддаются реакциям раскрытия цикла. Циклобутан более устойчив к броми-рованию, чем циклопропан, и хотя его можно гидрировать до бутана, это требует более жестких условий. Тем не менее пиро- [c.189]

    Если циклобутан имеет плоское строение, то он должен иметь угол С—С—С = 90°. Однако установлено, что его молекула слегка изгибается, образуя двугранный угол приблизительно 170°. Хотя этот изгиб уменьшает угол С—С—С до значения чуть меньше 90°, увеличивая тем самым напряжение в плоском цикле, но он частично снимает невыгодное заслоненное взаимодействие между соседними связями С—Н в плоской конформации циклобутана. Небольшое вращение вокруг связей цикла будет превращать циклобутан в две изогнутые структуры. Циклобутан менее напряжен, чем циклопропан, и поэтому менее реакционноспособен он инертен в реакции гидрогенизации, как и все большие циклоалканы. [c.211]

    Свойства. Циклопропан и циклобутан-газы, остальные А. с.-жидкие или твердые в-ва. Циклоалканы имеют т-ры кипения на 10-20°С выще, а плотность на 20% больше, чем соответствующие н-алканы. Для напряженных A. . с малыми и средними циклами (см. Напряжение молекул) характерны аномально высокие теплоты сгорания. [c.83]

    Судя по величинам байеровского напряжения, наименьшей энергией должен был обладать циклопентан, наибольшей — циклопропан и макроциклы. Это качественно более или менее согласовывалось с имевшимися в то время данными, поскольку макроциклы не были известны. Действительно, кольцо циклопропана очень легко размыкается под действием галоидоводородов и брома, легко каталитически гидрируется циклобутан значительно устойчивее циклопентан, как и следовало ожидать, чрезвычайно устойчив, и прочность его цикла напоминает прочность [c.525]

    Кроме углового напряжения в циклических соединениях существует напряжение, связанное с тем, что атомы водорода находятся частично или полностью в заслоненных (см. стр. 510 сл.) положениях в циклопропане, циклобутане и циклопентане каждый атом водорода практически соприкасается с двумя соседними. Для циклопропана к энергии углового напряжения добавляется энергия взаимного отталкивания трех пар атомов водорода. Б циклопропане каждый углерод связан с двумя другими и невалентных взаимодействий атомов углерода друг с другом нет. Иначе обстоит дело в случае циклобутана, где помимо углового напряжения ж энергии взаимодействия четырех пар атомов водорода существует некоторое дополнительное напряжение, связанное со взаимодействием между первым и четвертым атомами углерода, расстояние между которыми равно всего 2,2 А. Теоретический расчет суммы всех напряжений в циклобутане приводит к цифре, которая намного превосходит экспериментальную величину, полученную из термохимических данных. Поэтому в настоящее время принято считать, что -в циклобутане один из атомов цикла несколько выдается над плоскостью трех остальных. Такой выход из плоскости уменьшает общую энергию циклобутана. Напряжение моле- [c.526]

    Однако в циклопропане и циклобутане связи С-С приобретают неустойчивость в связи с напряжением химических связей в цикле. В циклопропане три С-атома расположены в вершинах равностороннего треугольника, который образован линиями, соединяющими ядра атомов углерода. Углы между этими линиями составляют 60° (рис. 10.1), что меньше валентного угла гибридной хр -связи на 49°. Химическая связь в циклопропане не может образо- [c.323]

    Выводы, сделанные на основе теории напряжения Байера для объяснения особенностей свойств окиси этилена, нашли дополнительное обоснование при электронографическом исследовании строения ее молекулы . Этими данными была подтверждена для окиси этилена формула строения Вюрца в виде трехчленного цикла, аналогично циклопропану с межатомными расстояниями (в A)  [c.17]

    Циклопропан — единственный плоский цикл, большое напряжение приводит к его неустойчивости. Ряд химических реакций с циклопропаном протекает с разрывом цикла, что согласуется с особенностями его электронного строения. Вследствие взаимного отталкивания орбиталей атомов углерода их максимальное перекрывание осуществляется не строго по прямой, соединяющей ядра связываемых атомов (рис. 3.6, в), а в некоторой степени приближается к боковому перекрыванию р-АО в этилене. Поэтому образующиеся С—С связи нельзя отнести к обычным а-связям. Они являются промежуточными между а- и л-связями, их называют банановыми , или т-связями. [c.62]


    Результаты СС5В(Т)-расчетов свидетельствуют, что в диоксиране 2а энергия напряжения цикла такая же (110.5 кДж/моль), как в циклопропане (110.9 кДж/моль) или оксиране (115.5 кДж/моль). Энтальпии изомериза- [c.186]

    Двойные и тройные связи обладают ббльшими рефракциями связей, так как тг-электроны легче поляризуются, чем а-электроны. Таким образом, двойные и тройные связи легко идентифицировать при помощи молекулярной рефракции. Даже (т-связи в напряженных циклах, как, например, в циклопропане и циклобутане, обладают ббльшими рефракциями связей (см. табл. 11), что может служить для идентификации этих циклов. [c.127]

    Все эти кетоны, если они з-же образовались, оказываются очень устойчивыми. Например, циклогептадеканон при нагревании. до 40СГ в незначительной степени обугливается, но в основном остается неизмененным прн нагревании с соляной кислотой до высокой температуры тоже не происходит значительного разложения. Циклоалканы, полученные из циклоалкаионов, были испытаны па отношение к иодистому водороду при высокой температуре. В то время как циклопропан (стр. 780) и циклобутан (стр. 783) в этих условиях претерпевали расщепление кольца, многочленные циклические углеводороды при обработке иодистоводородной кислотой не изменялись. Следовательно, 10—30-член-ные углеродные циклические системы очень устойчивы. Поэтому можно считать, что их кольцевые атомы не находятся в одной плоскости, а расположены в пространстве таким образом, что образуют циклы, более или менее свободные от напряжений. [c.923]

    Имеется много доказательств, вытекающих главным образом из рассмотрения констант спин-спинового взаимодействия в ЯМР-спектрах, что связи в циклопропанах отличаются от связей в соответствующих соединениях, не имеющих углового напряжения [204]. В обычном атоме углерода гибридизуются одна 5- и три р-орбитали, давая почти эквивалентные зр -орби-тали (разд. 1.11), каждая из которых на 25% имеет 5-харак-тер. Но в циклопропановом атоме углерода четыре гибридные орбитали далеко не эквивалентны. Две орбитали, направленные к внешним связям, имеют больший х-характер, чем обычная 5р -орбиталь, тогда как две орбитали, образующие связи внутри цикла, имеют меньший 5-характер и больший р-характер, что делает их похожими на обычные р-орбитали, для которых характерны валентные углы 90, а не 109,5°. Поскольку угловое напряжение за счет уменьшения углов в циклопропанах соответствует разности в величине характеристичного угла и реального угла в 60°, этот дополнительный характер частично снимает напряжение. Внешние орбитали на 33 %, имеют 5-харак-тер, т. е., по существу, являются р -орбиталями внутренние орбитали только на 17 % имеют 5-характер, так что их можно назвать зр -орбиталями [205]. Таким образом, каладая углерод-углеродная связь в циклопропане образована перекрыванием двух 5р -орбиталей. Расчеты по методу молекулярных орбита-лей показывают, что такие связи не являются целиком сг-свя-зями. В обычных С—С-связях 5р -орбитали перекрываются таким образом, что прямая, соединяющая ядра, становится осью симметрии электронного облака. Но в циклопропане электронная плотность смещена в сторону от кольца. Направление орбитального перекрывания показано на рис. 4.5 [20] угол 0 для циклопропана составляет 2Г. Аналогичное явление наблюдается и для циклобутана, но в меньшей степени здесь угол 0 равен 7° [206]. Связи в циклопропане называют изогнутыми, или банановыми -, по своему характеру они являются промежуточными между о- и я-связями, поэтому циклопропаны в некоторых отношениях ведут себя подобно соединениям с двойной связью [207]. Данные УФ-спектров [208] и некоторые другие данные свидетельствуют о том, что циклопропановое кольцо участвует в сопряжении с соседней двойной связью, причем в кон- [c.188]

    Сопоставив известные к тому времени факты, Байер в 1885 г. выдвинул свою известную теорию напряжения. При замыкании циклов, рассуждал Байер, валентные связи атомов углерода вынуждены отклониться от своего нормального тетраэдрического направления, причем величина этого отклонения зависит от числа звеньев в цикле. Так, например, циклопропан должен представлять собой равносторонний треугольник, в котором угол между циклообразующими связями углеродного атома должен составлять 60°, а не 109° 28, как в правильном тетраэдре. [c.316]

    ЦИКЛОАЛКАНЫ (циклопарафины, иолиметилепы, цик-ланы), насыщенные алициклич. углеводороды общей ф-лы СпНгп, где к > 3. Плохо раств. в воде, легко — в орг. р-рителях. Обладают наркотич. действием. Устойчивость циклов возрастает от Сз к Сб, затем до i2 несколько понижается (см. Напряжение молекул). По хим. св-вам Ц. начиная от s подобны предельным алиф. углеводородам циклопропан по склонности к электроф. присоединению напоминает непредельные углеводороды, но пассивнее их. Ц. вступают также в р-ции с изменением величины цикла, раскрытием цикла и трансаннуляриой циклизации. Получ. циклизация дигалогенидов гидрирование циклоалкенов или аром, соед. из функционально замещенных Ц. Пяти- и шестичленные Ц. содержатся в иефти. См. также Циклопропан, Циклопентан, Циклогексан. [c.679]

    Как уже говорилось, термодинамическая устойчивость циклов различна. Об этом можно судить до теплотам сгорания (АЯ), рассчитанным на одну метиленовую группу (табл. 53). Наибольшие теплоты соответствуют циклопропану, затем циклобутану, в которых велики искажения валентных углов (угловое напряжение) и торсионное напряжение (стр. 527). Большие циклы обладают довольно близкими значениями АЯ. Однако и здесь имеются довольно характерные отличия. Наименьшим запасом энергии из первых де< яти членов ряда обладает циклогексан. Более высокая энергия циклопентана объясняется торсионным напряжением, возникающим, как уже говорилось, в результате пространственного взаимодействия атомов водорода, которые находятся в невыгодных, заслоненных, положениях. В средних циклах (Се—С ) теплота сгорания на метиленовую группу немного больше, чем в циклогексане, вследствие другого типа напряжения, небайеровокого (взаимодействие атомов водорода, находящихся по разным сторонам кольца) с этим эффектом мы встретимся еще в разделе, специально посвященном большим и средним циклам. Наконец, энергия макроциклов наименьшая и близка к энергетическому уровню нециклических парафинов с нормальной цепью. [c.534]

    Аналогичная, но менее резко выраженная картина напряжения С-С-связей наблюдается в щпслобутане. Разница между линиями перекрывания (см. рис. 10.1) 5р -орбиталей соседних атомов (пунктирные линии) и линиями, соединяющими ядра атомов (сплошные линии), составляет только 19°. Поэтому из-за напряжения ст-связей циклобутан менее устойчив, чем циклопентан и циклогексан, в которых ст-связи не напряжены. Но он намного устойчивее циклопропана, если речь идет о римыкании цикла. В связи с пониженным перекрыванием связывающих орбиталей в циклопропане и циклобутане энергия С-С-связи в них на 50—40 кДж/моль ниже, чем в алканах, тогда как энергия С-Н-связей такая же, как вторичная С-Н-связь в алканах. [c.324]

    Малые циклы с напряженными трех- и четырехчленными йклами по реакционной способности отличаются от предельных леводородов и обычных циклоалканов и напоминают непре- ьные соединения. Так, циклопропан уже на холоду реагирует талогенами и галогеноводородами с расщеплением трехчлен-1 0 цикла. СНа-СН, [c.133]

    При постепенной сужении кольца циклопентана, в котором практически нет углового напряжения, мы получим сначала циклобутан, затем циклопропан и, наконец, двучленный цикл -этилен. Но для последнего уже нет речи об угловом напряжении, так как атомы углерода в нем оказываются в ином, не яр -, а д/> -гибридном состоянии, для которого характерно перекрывание орбиталей атомов углерода вне оси, проходящей через эти атомы, приводящее к образованию тс-связи, менее прочной, чем обьЛная ст-связь. [c.22]


Смотреть страницы где упоминается термин Циклопропан напряжение в цикле: [c.142]    [c.142]    [c.443]    [c.161]    [c.466]    [c.135]    [c.129]    [c.188]    [c.194]    [c.211]    [c.89]    [c.169]    [c.135]    [c.159]    [c.162]    [c.279]   
Основы органической химии (1968) -- [ c.111 ]

Основы органической химии 1 Издание 2 (1978) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Напряжение в цикле

Циклопропан



© 2025 chem21.info Реклама на сайте