Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кипения температура определение

    Углеводородное топливо представляет собой жидкость сложного состава, состоящую из большого количества индивидуальных углеводородов. Такая жидкость не имеет определенной температуры кипения, процесс кипения происходит в некотором интервале температур. Характеризовать испаряемость жидкостей сложного состава можно фракционным составом, т. е. предельными температурами выкипания определенных объемных долей (фракций). Характерными точками фракционного состава обычно считают температуру начала кипения, температуру выкипания 10, 50, 90% объема топлива и температуру конца кипения. Фракционный состав топлива определяют по ГОСТ 2177—59 в лабораторных условиях на стандартной установке, схема которой показана на рис. 4. [c.22]


    Температура кипения. Для определения температуры кипения индивидуальных алканов при атмосферном давлении предложена формула [13]  [c.52]

    Температура кипения, С определенная [c.18]

Рис. 1. Зависимость логарифма относительного объема удерживания от температуры кипения (для определения коэффициентов селективности) (Байер, 1959). Неподвижная фаза — гексатриаконтан. 1 — к-парафины 2 — ароматические углеводороды 3 — циклопарафины. Объемы удерживания отнесены к н-пентану. Рис. 1. Зависимость логарифма относительного объема удерживания от <a href="/info/6377">температуры кипения</a> (для <a href="/info/1431858">определения коэффициентов селективности</a>) (<a href="/info/25">Байер</a>, 1959). <a href="/info/5671">Неподвижная фаза</a> — <a href="/info/446186">гексатриаконтан</a>. 1 — к-парафины 2 — <a href="/info/7163">ароматические углеводороды</a> 3 — <a href="/info/12141">циклопарафины</a>. Объемы удерживания отнесены к н-пентану.
    Температура кипения. При нормальном атмосферном давлении температура кипения воды равна примерно 100° С. С увеличением давления температура кипения повышается, как это видно из таблицы. Это означает, что определенной температуре кипения соответствует определенное давление. Если вода должна циркулировать в системе отопления, то вся система должна находиться под более высоким давлением, чем соответствующее температуре давление. Содержание некоторого количества пара в воде не мешает циркуляции воды, наоборот, оно ее увеличивает. Естественная циркуляция имеет, однако, определенные границы. Известно, что предельное давление при естественной циркуляции равно приблизительно, 180—200 ата. [c.290]

    На различии в равновесных составах жидкой и паровой фаз основано разделение неограниченно растворимых жидкостей перегонкой. На диаграмме кипения верхняя линия /д/ц выражает зависимость температуры конденсации пара от его состава. Нижняя линия /д/в выражает зависимость температуры кипения раствора от его состава. Диаграмма двумя линиями разделена на три поля. Поле / — область существования пара (С = 2 — 1 + 1 =2) поле 2 — область существования жидкости (С = 2 — 1 + 1 =2), системы однофазны, имеют по две степени свободы, т. е. произвольно можно задавать температуру и состав без нарушения равновесия поле 3 характеризует двухфазное состояние системы (пар и жидкость) с одной степенью свободы (С = 2--2+1 = 1), т. е. произвольно можно задавать только один параметр. Каждой температуре кипения соответствуют определенные составы жидкой и паровой фаз. Любая фигуративная точка в поле 3 (например, точка а) отражает валовый (общий) состав системы. Чтобы найти составы фаз, необходимо провести изотерму через точку а. Состав жидкой фазы определяется точкой / (Хв = 0,2), паровой — точкой 2 (уд = 0,6). Пар обогащен компонентом В. Согласно закону Коновалова, прибавление легколетучего компонента В в исходный раствор, например до состава х , вызывает понижение температуры кипения исходной жидкости (от <1 до /г). При изотермическом изменении валового состава системы (от х = 0,4 до Хв = 0,5, что на диаграмме соответствует перемещению фигуративной точки а в точку Ь) число фаз и их составы остаются прежними (лр = 0,4 у = 0,6), но происходит [c.95]


    Определение температуры кипения. Для определения температуры кипения жидкостей существует много приборов. Простейший из них изображен на рис. 146. Круглодонная колба небольшой емкости (около 50 лл), но можно применять и плоскодонную той же емкости с широким горлом, снабжена пробкой с двумя отверстиями одно—для термометра и другое—для трубки, соединяемой с обратным холодильником. [c.169]

Рис. 2. Зависимость логарифма относительного объема удерживания от температуры кипения (для определения коэффициентов селективности). (Байер, 1959). Рис. 2. Зависимость логарифма относительного объема удерживания от <a href="/info/6377">температуры кипения</a> (для <a href="/info/1431858">определения коэффициентов селективности</a>). (Байер, 1959).
    При постоянных температурах рабочих сред (кипение, конденсация) определение разности температур из равенства (337) не вызывает затруднений. Однако во всех остальных случаях [c.148]

    В 1953 году Коулсон и Мета [27] опубликовали данные по теплообмену, полученные на небольшом испарителе из нержавеющей стали. Труба испарителя имела внутренний диаметр 11,5 мм и длину 1,65 м. Греющей средой являлась горячая вода, что позволило получить хорошую воспроизводимость тепловых потоков. Питательная вода подавалась в испаритель при температуре насыщения, при этом отпадала необходимость определения начала кипения. Температура стенки трубы измерялась неподвижными термопарами, а температура жидкости по длине испарителя — передвижной термопарой. В работе определялись коэффициенты теплопередачи и коэффициенты теплоотдачи к воде, растворам сахара и изопропиловому спирту. Для изменения поверхностного натяжения к воде добавлялись небольшие количества (0,01—0,1%) типоля . Полный температурный напор изменялся от 8,3 до 34,5° С, расход — от 11 до 81,5 кг час. Температура насыщения находилась в пределах 43—70° С. Коэффициент теплоотдачи рассчитывался графически методом Вильсона по значениям к, термическому сопротивлению стенки и сопротивлению греющей среды. [c.73]

    Замерзание и кипение растворов. Индивидуальные вещества характеризуются строго определенными температурами переходов из одного агрегатного состояния в другое (температура кипения, температура плавления, температура сублимации и т. п.). Так, вода при нормальном атмосферном давлении (101,3 кПа) кристаллизуется при температуре 0°С и кипит при 100 С. [c.229]

    Когда наступает спокойное равномерное кипение, температуру бани по возможности поддерживают постоянной, чтобы не отгонялись компоненты, кипящие при более высокой температуре. Для определения температуры кипения применяют термометр с возможно меньшим шариком. Если количество образца меньше 100 мг, перегоняют без термометра. В этих случаях указывают интервал перегонки с пометкой температура бани . [c.55]

    При неизменном давлении в процессе перегонки для каждой химически чистой жидкости существует своя, строго определенная температура кипения. Температура кипения индивидуальных углеводородов в гомологическом ряду тем выше, чем больше изс молекулярный вес. [c.121]

    Криоскопия и эбулиоскопия. Зависимости (XIV.4) и (XIV.5) удобно использовать для определения молекулярной массы растворенного вещества. Для проведения опыта выбирают подходящий растворитель с известной криоскопической или эбулиоскопической постоянной, далее из навесок и приготовляют раствор не слишком большой концентрации (не более 0,5 т) и точно измеряют понижение температуры замерзания или повышение температуры кипения. Метод определения молекулярной массы по понижению точки замерзания называется криоскопией, а метод, основанный на измерении повышения температуры кипения, — эбулиоскопией. В обычной практике криоскопией пользуются более охотно, чем эбулиоскопией, так как гораздо легче точно измерить понижение температуры замерзания, чем повышение температуры кипения. [c.208]

    Для каждого агрегатного состояния О является функцией температуры. Для трех агрегатных состояний необходимо ввести три функции С"" (7), 0 (Г) и 0 " (7). Эти функции по-разному изменяются с температурой, поскольку производная энергии Гиббса по температуре согласно (12.41) есть —5, а энтропии разных агрегатных состояний существенно различаются. В соответствии с этим функция будет убывать более полого, чем С (7), а последняя в свою очередь более полого, чем 0 (Т). При определенных значениях температуры кривые, изображающие эти зависимости, пересекаются. При температуре, отвечающей точке пересечения кривых 0 ° Т) и С (7 ), в равновесии находятся твердая и жидкая фаза, и, таким образом, эта точка является точкой плавления вещества. В точке пересечения кривых С (> ) и О " (Г) при определенном давлении р будут сосуществовать жидкая и газовая фазы, и это будет точка кипения (температура кипения) вещества при заданном давлении. [c.197]

    Температура кипения. Температура, при которой давление насыщенных паров над жидкостью становится равным атмосферному, называется ее температурой кипения. При определенном давлении 1,01-10 Па Тк К характеризует растворитель. [c.218]


    Для определения содержания воды в некоторых органических жидкостях можно воспользоваться также и другими методами, основанными на измерении таких физических свойств как плотность, показатель преломления, вязкость, температура кипения, температура замерзания, спектр поглощения в инфракрасной области и масс-спектр. Для достижения высокой точности необходимо, чтобы различие в физических свойствах, обусловленное наличием воды, было достаточно большим. [c.266]

    Чистая жидкость может быть идентифицирована по температуре кипения. Прибор для определения температуры кипения показан на рис. 8.5. Термометр, с помощью которого определяют температуру пара, находящегося в равновесии с жидкостью, не должен быть погружен в жидкость из-за возможности ее перегрева выше температуры кипения. Температура кипения по ряду причин является менее надежным показателем, чем температура плавления. [c.739]

    Для приблизительной оценки температуры кипения при определенном внешнем давлении достаточно знать температуру кипения при каком-либо другом известном давлении. [c.60]

    ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ КИПЕНИЯ Макрометод определения температуры кипения [c.146]

    При получении веществ заданного строения по давно известным и многократно проверенным методикам при соблюдении всех условий синтеза идентификация полученных продуктов заключается только Б определении некоторых констант после соответствующей очистки. Такими константами являются для жидких веществ температура кипения при нормальном или другом, но вполне определенном давлении, абсолютная илн относительная плотность при стандартной температуре, показатель преломления нри указанной длине волны падающего света и т. д. Для твердых (при обычных условиях) веществ такой константой служит температура плавления, сравнительно мало зависящая от давления. Однако для подтверждения чистоты вещества можно использовать во многих случаях н температуру кипения прн определенном давлении. Чистоту полученного вещества часто подтверждают тонкослойной хроматографией, если разработаны условия ее проведения. Таким образом, идентификация полученного но проверенной методике вещества сводится по сути дела к оценке его чистоты. [c.63]

    Различают идеальные и реальные растворы. В идеальных растворах компоненты смешиваются, как идеальные газы, без изменения объема и энтальпии. Увеличение энтропии таких растворов рассчитывают по уравнениям для идеальных газов. Растворы, подчиняющиеся законам идеальных растворов прн всех концентрациях, называют совершенными-, если это условие соблюдается лишь при сильном разбавлении, то их называют бесконечно разбавленными. Чем меньше концентрация раствора, тем ближе его свойства к свойствам идеального раствора. Изучение свойств идеальных растворов (давление насыщенного пара, температура кипения, температура кристаллизации) используют для определения молекулярного веса, стспенн диссоциации растворенных веществ. В физико-химических исследованиях концентрацию растворов выражают через моляль-ность — число молей вещества на 1000 г растворителя или мольные доли, равные числу молей вещества, деленному на число молей всех компонентов в растворе. Для бинарного раствора (из компонентов А и В с числом модей Пд и мв) мольные доли компонентов Л д и Мц равны  [c.43]

    Как известно, для индивидуального химического соединения характерна совокупность постоянных физических свойств, называемых константами этого соединения (плотность, температура кипения, температура плавления и др.). Нефть же является не только смесью многих индивидуальных соединений (или точнее нефть представляет собой взаимный сопряженный раствор различных углеводородов и гетероатомных соединений), но и смесью переменного (для различных нефтей) состава. Поэтому следует помнить, что физические свойства нефти являются специфическими параметрами, характерными для каждой данной нефти. Тем не менее определение некоторых физических свойств нефти имеет большое значение. Такие свойства, как плотность, температурные пределы кипения, температура застывания, показатель преломления и др., дают первую, хотя и грубую характеристику нефти и ее товарных качеств. [c.26]

    Когда наступит спокойное и равномерное кипение жидкости в колбочке, что обычно заметно по постепенному заполнению воротничка, температуру бани следует поддерживать по возможности постоянной, чтобы не отгонялись вышекипящие компоненты. Тем самым можно проводить и некоторое фракционирование, если в перегоняемом образце содержатся вещества, достаточно отличающиеся по температуре кипения. Для определения температуры кипения применяют термометр с возможно меньшим шариком, который помещают в колбочку. Если количество образца меньше 100 мг, перегонку проводят без термометра. После окончания перегонки термометр осторожно вынимают, не касаясь стенок колбочки, и оставшуюся на нем каплю дистиллята переносят в баллончик, в который отбирают дистиллят из воротничка. В тех случаях, когда перегонку ведут без внутреннего термометра, указывают интервал температур перегонки, конечно, с пометкой температура бани . Это значение обычно на 20—30 выше, чем истинная температура кипения. При работе с высококипящими [c.705]

    Давление паров и температура кипения чистого вещества или смеси — взаимно связанные величины. Эта связь определяется физико-химическими свойствами исследуемой жидкости. Для установления этой связи можно использовать два метода 1) измерять температуру кипения при определенном давлении и 2) определять давление паров при заданной температуре. Первый метод (получил название динамического, а второй статического. В принципе оба метода равноценны. Однако в методическом отношении по технике экспериментальной работы эти методы сильно различаются. В каждом конкретном случае методика исследования выбирается с учетом зтих различий и специфических свойств Изучаемой системы. [c.41]

    Здесь в равновесном состоянии системы, например, определенному давлению и заданному составу жидкой фазы всегда соответствуют определенная температура кипения и определенный состав паровой фазы. [c.424]

    Для третичных и вторичных спиртов характерна аномалия плотности паров при высоких температурах (определение по В. и С.. Мейеру, т. I). Третичные спирты (до С5а) дают при температуре кипения нафталина (218 ) лишь половинное значение молекулярного веса, вследствие их разложения на воду и алкилены вторичные спирты (до Сд) проявляют такую же аномалию, но лишь при температуре кипения антрацена (360 ) первичные спирты (до С ) при этих температурах не разлагаются. [c.41]

    Выше (см. разд. 2.2) было показано, что температуры кипения при определении фракционного состава существенно зависят от разделительной способности того аппарата (метода), который используется для этих целей. Чем выше эта разделительная способность, тем ниже для одного и того же нефтепродукта будет фиксироваться температура начала кипения и выше -конца кипения Исходя из этого, для общей сопоставимости показателей четкости ректификации было принято оценивать [c.381]

    Как правило, существующие стандарты тфедусматривают определение температуры начала кипения, температуры выкипания 10, 50, 90 % тошшва и температуры конца его кипения (98, 97,5, 97 ), [c.37]

    Температуры плавления и кипения. Температуры плавления н кипения даны для давления 760 мм рт- ст. значения температур кипения, определенных при других давлениях, снабжены показателем, указывающим неличину давления. Например, 82 означает, что вещество имеет температуру кнпеиия 82° С прн давлении 15 мн рт. ст. [c.397]

    Обычный элементарный анализ, проводимый для установления эмпирической формулы соединения, дает мало сведений о чистоте вещества. Вещество должно быть сравнительно сильно загрязненным, чтобы отклонение в элементарном анализе превзошло считающуюся допустимой ошибку в 0,2%. Чистоту вещества устанавливают по наступающей в процессе очистки неизменности его физических констант. Константами, служащими для этой цели, являются температура плавлепия (или застывания), температура кипения при определенном давлении, показатель пр еломления, плотность, спектральные данные, в некоторых случаях — удельное вращение плоскости поляризации света. Когда очистку вещества проводят в целях его идентификации, обычно довольствуются достижением констант, совпадающих с надежными данными предшествующих исследователей. [c.26]

    Диалкилалюминийхлориды вначале казались мало приемлемыми для синтеза а-олефинов, так как в результате реакций достройки и вытеснения образуются. смесн а-олефинов, включая низший член этого ряда, температура кипения которого определенная и не может быть изменена по желанию, как это имело место у соединений типа RsAlOR. Полного отделения олефина от диалкилалюминийхлорида можно добиться с помощью добавки хлористого. калия. Если обрабатывать продукты реакции вытеснения и дезактивации триалкилалюминиевого катализатора хлористым калием, взятым в количестве, эквивалентном содержанию хлорида, то смесь разделяется на два слоя нижний слой представляет собой ЩАШгСЬ] и верхний слой — олефин. При этом основное количество коллоидального никеля переходит в олефиновый слой и вместе с ним отделяется от нижнего слоя. Так как по ориентировочным опытам расщепление этой комплексной соли идет с трудом, то отделение диалкилалюминийхлорида таким способом имеет смысл только тогда, когда комплексную соль можно вновь применять для реакции достройки. Поэтому было исследовано,. можно ли комплекс диалкилалюминийхлорида с хлористым калием и добавкой небольшого количества триалкилалюминия снова использовать для проведения реакции достройки. Это оказалось возможным, но требовало условий, при которых проведение реакций достройки затруднено из-за возможных побочных реакций. Эти опыты следует ставить со свежей, еще свободной от никеля комплексной солью, так как даже незначительное содержание остаточного никеля в комплексе, полученном в ходе отделения олефина, препятствует реакции достройки. [c.227]


Смотреть страницы где упоминается термин Кипения температура определение: [c.182]    [c.195]    [c.93]    [c.88]    [c.76]    [c.46]    [c.253]    [c.75]    [c.140]    [c.51]    [c.307]    [c.254]   
Препаративная органическая химия (1959) -- [ c.144 ]

Препаративная органическая химия Издание 2 (1964) -- [ c.145 ]




ПОИСК





Смотрите так же термины и статьи:

Температура определение



© 2025 chem21.info Реклама на сайте