Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель и его сплавы Оборудование

    Широкое использование в производстве сплавов имеет никель. Сплав никеля с медью применяется для изготовления монет. Один из сплавов никеля с медью и малыми добавками железа и марганца, называемый монель-металлом, характеризуется высокой химической устойчивостью. Из него делается кухонная утварь, оборудование прачечных и госпиталей, аппараты химической промышленности. [c.473]


    Сплавы на основе никеля. Использование сплавов на основе никеля в условиях сильного воздействия коррозии рассматривалось выше. Сплав монель с содержанием N1 — 30 Си используется в ряде установок, таких, как охладители соленой воды, в частности морской, и нагреватели испарителей питательной воды, в которых вода циркулирует в трубном пространстве, а также в теплообменниках, в которых происходит коррозионное растрескивание и другие виды коррозии, вызванные воздействием хлоридов. Монель обладает значительной стойкостью к коррозии, вызванной фтористыми соединениями, и может использоваться, например, в ребойлерах и конденсаторах при алкилировании с применением фтористого водорода НР в качестве катализатора [12]. Однако на современных заводах, где применяются меры по очистке воды, для изготовления теплообменного оборудования находит широкое применение углеродистая сталь [13]. Монель может также использоваться в уставовках с горячей каустической содой и горячим раствором карбоната калия. [c.316]

    Никелевые покрытия имеют толщину от 5 до 40 мкм. Для декоративных покрытий используют никель или сочетание никель- -хром в зависимости от состава основного металла (стали, цинкового сплава, меди или медных сплавов, алюминия или алюминиевых сплавов, пластмассы) и условий окружающей среды. С более толстослойным покрытием изготовляют химическое оборудование или изделия, применяемые в гальванопластике. [c.97]

    НОВ. Части оборудования, работающие в зонах турбулентного движения, покрывают никелем или изготавливают из сплава хастеллой В. [c.222]

    В гальванопластике применяют гальванические процессы нанесения различных функциональных покрытий, например для придания поверхности износостойкости (хромирование, химическое никелирование, электроосаждение сплавов, содержащих фосфор, бор и др.), улучшения внешнего) вида (блестящее хромирование, никелирование, фосфатирование, нанесение черного иикеля, хрома и др.), улучшения паяемости (нанесение сплава никель—бор) и т. д. Оборудование для этих процессов подробно описано в книге [18]. [c.225]

    Большинство, металлов также подвергается коррозии. Никель пассивируется слоем хемосорбированного фторида никеля, а алюминий — пленкой окиси алюминия, оба металла и их сплавы (монель, инконель, легкие сплавы) оказались превосходными конструкционными материалами для оборудования заводов. Малоуглеродистые стали, медь, золото, серебро, платина и индий в этом отношении были бы посредственными материалами. На газодиффузионных заводах малоуглеродистые стали (в случае их применения) покрываются слоем никеля (электролитически или химически) на всех поверхностях, контактирующих с гексафторидом урана. Загрязнения тппа осадков сульфидов, силикатов пли карбидов реагируют с гексафторидом урана и газообразными продуктами его разложения — F2 и НЕ в первую очередь [3.14, 3.18, 3.205]. [c.123]


    Оборудование и методика. В этой работе применялось два автоклава 1) автоклав, сделанный из сплава Монеля, емкостью 1,5 л, испытанный гидравлически на давление 750 атм, и 2) автоклав,покрытый никелем, емкостью 750 мл, испытанный на давление 340 атм. Автоклавы снабжены снимаемыми головками, смонтированными из железной пластины толщиной 13 -мм во время операции не защищались только регулирующий клапан, измерительные приборы и выводная линия. [c.175]

    Соляная кислота отличается высокой агрессивностью по отношению к большинству металлов и сплавов. Реальное применение для изготовления оборудования и деталей оборудования, подвергающихся воздействию соляной кислоты, находят лишь титан и его сплавы, никель и его сплавы, тантал и молибден, а также кремнистый чугун. Нелегированный титан обладает ограниченной стойкостью в кислоте даже при комнатной температуре (рис. 7-3) 261]]. Наличие в растворе окислителей (в частности, растворенного хлора) расширяет пределы применимости титана в соляной кислоте. Хорошей стойкостью обладает легированный палладием (0,2 масс.%) или молибденом (30 масс.%) титан. [c.103]

    Применение. Никель —компонент сплавов, например специальных сталей, монетного сплава, материал для изготовления анодных пластин (при гальваническом никелировании), лабораторной посуды и оборудования, катализатор гидрирования. Используется в производстве никель-кадмиевых аккумуляторов. [c.436]

    В аустенитных хромоникелевых сталях, содержащих молибден, также может иметь место выделение сигма-фазы, но в меньшей степени. Сигма-фаза не образуется в сплавах, имеющих более высокое содержание никеля. В нестабилизированных аустенитных хромоникелевых сталях при рабочих температурах 450—750° С происходит выделение карбидной фазы. Хотя это не имеет особого значения с точки зрения сопротивления коррозии при рабочей температуре, в процессе остановки оборудования может иметь место межкристаллитная коррозия. Для борьбы с этим явлением хромоникелевые стали стабилизируют, вводя добавки ниобия или титана. [c.212]

    Оборудование и материалы муфельная печь, огнеупорные тигли с крышкой, образцы металлов (сталь, чугуи, железо, медь, никель, сплавы) размером 30 X 20 X 2 мм или 20 X 10 X 1 мм. [c.75]

    Металлографическим анализом установлено, что сквозное разрушение не является следствием коррозии, а обусловлено дефектом сварки, который выявился при длительном воздействии среды. Это указывает на необходимость тщательной сварки оборудования, подвергающегося воздействию нитрат-нитритного расплава. На другой гильзе из углеродистой стали, которую испытывали 4000 ч с расплавом (обновляемым каждые 700 ч), сквозного разрушения также не было обнаружено. После 2100-часового испытания с расплавом гильз из сталей Х5М, Х17Т, Х18Н10Т, никеля, сплава ХН78Т и титана не наблюдалось сквозных разрушений цельного и сварного металла. [c.153]

    Для оборудования, работающего с нитрат-нитритным расплавом при 500° С, рекомендуются сталь Х5М и сплав ХН78Т, а при температурах ниже 450° С — углеродистая сталь и в некоторых случаях алюминий и титан. При 500° С можно применять также сталь Х18Н10Т и никель для оборудования простой конструкции. [c.158]

    Сетчатые фильтры грубой очистки нашли применение в систе1мах смазки судовых, тепловозных, стационарных дизельных двигателей, а также различного промышленного оборудования. Фильтрующие элементы таких фильтров могут быть цилиндрическими, тарельчатыми и дисковыми. Тонкость фильтрования этих элементов зависит от размеров ячейки металлических сеток, применяемых в элементах. Сетчатые цилиндрические фильтрующие элементы изготавливают в виде перфорированного или гофрированного в поперечном сечении цилиндрического каркаса, обернутого металлической сеткой (из латуни, меди, фосфористой бронзы, конструкционной стали с противокоррозионны1М покрытием, нержавеющей стали, никеля, монель-металла и других металлов и сплавов). Неметаллические сетки (пластмассовые, стеклянные и т. д.) в фильтрах грубой очистки не получили распространения ввиду их пониженной прочности и меньшей способности к регенерации по сравнению с металлическими. [c.256]

    Снижение прочности оборудования мол ет также происходить при удалении металлов в результате образования их карбонилов, как это описано выше. Удаление железа или никеля из сплавов, даже из нержавеющей стали, может быть таким сильным, что сиил<ение прочности стенок труб из-за их утончения может, например, привести к разрыву стенок. В таких случаях в стенках часто делают углубления минимальной толщины, так чтобы там, где существует вероятность потенциального разрыва, образовывалась легко обнаруживаемая течь. [c.144]

    Серебрение или плакировка серебром применяются для защиты стального оборудования от коррозии. Однако даже небольшое нарушение сплошности покрытия может вызвать интенсивную коррозию основного металла. В растворах кислоты любой концентрации при высоких температурах стойки медноникелевые сплавы с содержанием никеля 20— 30%, стали Х23Н28МЗДЗТ, Х20Н28М4Д, платина, золото. [c.828]


    Для иредотвращения сульфидной и водородной коррозии аппаратуру установки, работающей при высокой температуре, изготовляют из хромоникелевой стали. Для борьбы с хлоридной коррозией и загрязнением хлоридами в низкотемпературные секции реактора подают аммиак, в поток сырья добавляют ингибиторы коррозии или применяют аппаратуру из сплавов с примесью никеля. Чтобы предотвратить загрязнение аппаратов осадками хлористого аммония, образовавшегося после подачи аммиака или из хлор- и азотсодержащих соединений, и растрескивание стали в теилообменниках и трубопроводах, аппараты во время ремонта и остановок промывают водой и разбавленными щелочными растворами. Кроме того, необходимо тщательно следить за аппаратурой и оборудованием установки, а также контролировать содержание железа в конденсационных водах, сбрасываемых с установки. В случае обнаружения железа в повышеиных количествах необходимо определить место коррозионного поражения. Для уменьшения коррозии образующийся в процессе сероводород абсорбируют 15%-ным раствором. моноэтаноламина и после десорбции удаляют из системы. [c.200]

    Чтобы увеличить срок службы оборудования, на наиболее опасных его участках применяются стойкие против коррозии материалы— легированные стали Х5М, 0X13, латунь, сплав никеля и меди, называющийся моиель-металлом. Для снижения стоимости аппаратуры ее изготавливают из двухслойного металла внутренняя поверхность, подверженная действию вредных соединений, делается из легированных металлов, нарул<ная — из углеродистой стали. [c.153]

    Никелевые покрытия и плакирующие сплавы на основе никеля используют в зарубежной практике для защиты от коррозии элементов оборудования глубоких нефтяных скважин (труб, вентилей). В работе [48] приведены результаты испытания труб, изготовленных из стали марки AISI 4130 с плакировкой никелевым сплавом 625, полученных методом горячего изостатического прессования. Толщина плакирующего слоя биметалла составляла 29 и 4 мкм. Испытания включали анализ изменения механических свойств материалов после вьщержки в хлорсодержащей среде в присутствии сероводорода, оценку стойкости их к коррозионному растрескиванию и питтинговой коррозии. Результаты лабораторных и промышленных испытаний показали высокие эксплуатационные свойства биметалла при использовании в качестве конструкционного материала для оборудования высокоагрессивных сероводородсодержащих глубоких скважин. [c.96]

    Все это свидетельствует о необходимости широкого внедрения никель-мед-ного сплава — монеля в качестве материала для труб и облицовки корпусов конденсаторов, соприкасающихся с содержащими соляную кислоту и сероводород средами (например, нестабильный бензин), т. е. в условиях, в которых легированные мышьяком латуни ЛА-77-2 и ЛО-70-1 обнаруживают недостаточную стойкость. Применение моиеля позволит увеличить срок службы оборудования и длительность межремонтных периодов в несколько раз. [c.163]

    Наиболее распространенным сплавом типа Ni u является мо-нель, содержащий примерно 65% никеля. Он противостоит всем типам агрессивных атмосфер, нейтральным и кислым растворам солей, например хлоридам, сульфатам и др., исключая азотнокислые соли и хлорид железа. В неокисляющих кислотах очень стабилен. Сплав инконель с содержанием примерно 75% никеля, 15% хрома и 4—6% железа более устойчив в окисляющей среде, чем монель. Его применяют при производстве аппаратуры дл органического синтеза при высоких давлениях в присутствии галогенов, окислов азота или сероводорода. Сплавы типа Ы1Сг известны как нимоник. Он легко поддается ковке и сохраняет свои механические свойства при высоких температурах. Как жаростойкий и жаропрочный материал нимоник применяют главным образом при производстве оборудования и узлов, работающих в продуктах сгорания при высоких температурах. Чаще всего из этого сплава изготовляют камеры и лопатки газотурбинных установок, которые подвержены воздействию температур 700—800° С. [c.37]

    Из сплавов цветных металлов для изготовления оборудования химических производств, работающего в морской воде, используют главным образом сплавы меди с никелем типа МНЖ 1-5 или монель-металл НМЖМц 28-2,5-1,5, поскольку использование латуней сопровождается их коррозионным обесцинкованием. Не подвержены обесцинкованию сплавы типа томпак, содержащие 80—85 % меди, легированной цинком, однако для них, как и для латуни, характерно коррозионное растрескивание. Для его предотвращения необходим отжиг аппаратов при 250—300 °С, обеспечивающий снятие внутренних напряжений [10]. [c.30]

    Организация технологических процессов в производствах получения М. должна соответствовать требованиям перечисленных выше санитарных правил для цветной металлургии. Производи ства, применяюшие М. и ее соединения, а также сплавы (припои) на основе М., должны обеспечить поточность технологических процессов, максимальную механизацию ручных операций, оборудование рабочих мест эффективной вытяжной вентиляцией, обеспечивающей предельно допустимую концентрацию М. и ее соединений, примесей других металлов (никеля, кобальта) и продуктов деструкции, образующихся в процессе получения М. в воздухе рабочей зоны. Контроль за содержанием вредных веществ в воздухе рабочей зоны должен производиться на всех рабочих местах не менее 1 раза в квартал и по схеме и методике, согласованными с местными органами санитарно-эпидемиологической службы. [c.78]

    С, нагрев выше точки А с, (см. Д иаграмма состояния железо — углерод), деформирование на 25% и охлаждение на воздухе. Предел текучести при этом увеличивается до 54 кгс мм , предел прочности на растяжение — до 72 кгс/мм . Применяют такую обработку в связи с созданием процессов контролируемой и непрерывной прокатки, в к-рых последние этапы деформирования приходятся на субкритический интервал т-р (600— 400° С). Комплекс мех. св-в низколегированных сталей повышенной прочности с микролегирующи.ми добавками вследствие обработки этими методами особенно высок. В частности, т-ра перехода в хрупкое состояние снижается до — 120° С. Разработана механико-термическая обработка с субструктурным упрочнением титана сплавов с альфа -Н бета-структурой в режимах сверхпластичности. Образованию субструктуры способствуют высокая диффузионная подвижность атомов в состоянии сверхпластичности и высокий коэфф. деформационного упрочнения. Высокотемпературную термомех. обработку чаще всего применяют в произ-ве листа, сортового проката и труб, для упрочнения изделий из сталей повышенной прочности и сплавов титана с альфа- и альфа -Ь бета-структурой низкотемпературную — для получения и упрочнения тонкостенных цилиндрических оболочек, лент и проволоки из высокопрочных мартенситных сталей механико-термическую обработку — для упрочнения изделий из жаропрочных аустенитных сталей, сплавов никеля, молибдена, вольфрама, сплавов титана с метастабильной бета-фазой, а также листа, сортового проката и труб иа стареющих алюминия сплавов. Высокотемпературную термомех. и механико-термическую обработку обычно осуществляют на стандартном прессовом, прокатном и волочильном оборудовании. Однако для высокотемпературной термомех. обработки типа непрерывной или контролируемой прокатки с низкой т-рой окончания деформирования и особенно для низкотемпературной термомех. обработки используют сверхмощные станы [c.547]

    В процессе изготовления аппаратуры и оборудования из коррозионностойких сталей, вследс -вие неправильной термической обработки или при сварке могут возникнуть условия, вызывающие межкристаллитную коррозию. По современным представлениям преимущественное разрушение границ зерен обусловлено электрохимической неоднородностью поверхности, возникающей в определенном для данного сплава интервале температур в результате структурных превращений. Например, при нагреве хромоникелевых сталей при 600—800 °С происходит выделение из твердого раствора сложных карбидов, содержащих хром, железо и никель. Эти карбиды выпадают преимущественно но границам зереи, что приводит к обеднению отдельных участков сплава хромом. Наиболее сильное обеднение наблюдается в зоне, непосредственно прилегающей к границе рерна. Имеются и другие факторы, способствующие межкристаллитной коррозии. Например, для коррозионностойких сталей, содержащих молибден, большое значение приобретает выделение о-фазы, также способствующей обеднению хромом прилегающих к границам участков. Перераспределение хрома в коррозионностойких сталях возможно и в результате выпадения высокохромистого феррита — продукта распада аустенита, что вызывает межкристаллитную коррозию, например, сварных швов. Существует мнение, что на склонность к межкристаллитной коррозии влияют также и внутренние напряжения. [c.55]

    Эндрью и Никольс [25] определяли магний в никеле высокой чистоты и в сплавах никеля. Они применяли модифицированный серийный прибор и показали, что присутствие никеля в их образцах устраняло возможные помехи со стороны алюминия и кремния. Даже при использовании низкотемпературного пламени и простого оборудования Эндрью и Никольс при анализе образца весом 250 ме получили стандартное отклонение, равное содержанию 0,00005% Mg в металле. В течение 1 ч оказалось возможным провести анализ серии из 12 образцов. [c.177]

    В промышленности широко используют литые изделия, так как некоторые сплавы (например, Ре81), имеющие высокую коррозионную стойкость во многих агрессивных средах, отличаются повышенной твердостью и хрупкостью и могут применяться только в литом состоянии. Увеличение выпуска литья из коррознонностойких сталей требует упрощения технологии изготовления, особенно для усложненных конфигураций, химического оборудования, эксплуатируемого в агрессивных средах. Доля отливок из легированных сталей все время значительно возрастает по сравнению с общим объемом литых изделий, применяемых в химической промышленности. В настоящее время в создании новых марок литых коррозионностойких сталей наблюдается та же тенденция, что и для деформируемых сталей, т. е. стремление к понижению содержания никеля, повышению прочности сплавов и коррозионной стойкости специальным легированием. Литые коррозионностойкие стали могут подвергаться межкристаллитной коррозии, поэтому для ее предупреждения стали легируют также титаном или ниобием. Однако титан ухудшает литейные свойства металла, вследствие его добавок получаются пористые отливки. Литейные свойства аустенитных сталей типа 12Х18Н9ТЛ ниже углеродистых. [c.216]

    В качестве материалов для оборудования находят широкое применение никель, медь и их сплавы. В ГДР оборудование для сушки соли изготовляют из сплавов меди. Срок эксплуатации этих аппаратов превышает 10 лет. Алюминий АД1 и сплав АМг2 показывают высокую коррозионную стойкость в среде влажной горячей соли при температуре +220 °С. Скорость коррозии этих материалов соответственно составляет 0,006 и 0,12 г/(м ч). В США с целью увеличения долговечности технологического оборудования производства гексаметафосфата натрия используют коррозионно-стойкие стали. В качестве конструкционного материала аппаратуры сушки сульфата [c.566]

    Основные материалы оборудования парогенераторов стали перлитного класса. Широко используются стали (табл. 30.3) с малыми добавками ванадия. В сталях, предназначенных для изготовления труб пароперегревателей, рекомендуется никель заменять элементами с высокой температурой плавления сульфидов и сульфидных эвтектик, например марганцем. Аустенитная сталь ДИ-59, содержащая марганец, медь и ниобий, обладает стойкостью в продуктах сгорания высокосернистого мазута при температуре 650 С и устойчива к межкристаллитной коррозии. Для изготовления шипов и подвесок используют малопластичные, но весьма коррозионно-стойкие сплавы системы Ре—Сг—51 (сильхромы) и Ре—Сг—51— А1 (сихромали) [3]. При повышении концентрации алюминия и хрома возрастает стойкость к ванадиевой коррозии, добавки молибдена ухудшают стойкость сталей в продуктах сгорания мазута. Для изготовления стоек и подвесок труб газоходов, температура которых превышает температуру поверхностей нагрева, используют хромоникеле- [c.204]


Смотреть страницы где упоминается термин Никель и его сплавы Оборудование: [c.683]    [c.352]    [c.808]    [c.8]    [c.193]    [c.75]    [c.404]    [c.2]    [c.136]    [c.808]    [c.847]    [c.88]    [c.5]    [c.154]    [c.84]    [c.341]    [c.496]    [c.559]    [c.107]   
Оборудование нефтеперерабатывающих заводов и его эксплуатация Изд2 (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Сплавы никеля

Сплавы никеля Jt И h I Сплав



© 2025 chem21.info Реклама на сайте