Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефины фтора

    Опытные данные о реакциях пятифтористого брома отсутствуют, В некоторых патентах заявлены попытки его применения без достаточных подтверждений. Мерей утверждает, не приводя при этом никаких экспериментальных подробностей, что пятифтористый бром как фторирующий агент мало отличается от трехфтористого брома. В обоих случаях при присоединении к двойной связи хлорированных олефинов фтор присоединяется п большей, а бром — в меньшей степени. [c.61]


    Скорость реакции зависит от природы галогена и строения олефина. Фтор реагирует с воспламенением , иод — медленно на сол- [c.67]

    Скорость реакции зависит от природы галогена и строения олефина. Фтор реагирует с воспламенением, иод — медленно на солнечном свету. Реакция присоединения облегчается при увеличении числа заместителей у двойной связи. Это объясняют большей поляризацией этой связи под влиянием замещающих радикалов. [c.75]

    Скорость реакции зависит от природы галогена и строения олефина. Фтор реагирует с воспламенением , иод — медленно на солнечном свету. Реакция присоединения облегчается при увеличении числа заместителей у двойной связи. Это объясняют большей поляризацией этиленовой связи под влиянием замещающих радикалов и увеличением устойчивости промежуточных радикалов или ионов благодаря сверхсопряжению (стр. 41). [c.70]

    В ряду галоидфенолов химическая активность падает от фтор-фенолов к бромфенолам. о-Галоидфенолы легче алкилируются олефинами, чем тг-галоидфенолы и обычно образуют более сложную смесь продуктов алкилирования и с более высоким общим выходом. [c.205]

    При применении специфических катализаторов деструкцию полипропилена можно использовать в практических целях. Например, при нагревании полипропилена выше 160° С в атмосфере азота с 5 вес.% фтористого бора получаются полимеры меньшего молекулярного веса, причем они не содержат ни бора, ни фтора [15]. В присутствии хелатов металлов IV группы 2-й подгруппы и алюминия из аморфного полипропилена при 300° С в атмосфере азота количественно образуются олефины с 9—15 углеродными атомами [16]. [c.127]

    Г.-типичный представитель перфторолефинов (см. Фтор-олефины). С нуклеоф. агентами легко образует продукты замещения и присоединения, напр.  [c.509]

    Фторирование элементным фтором олефинов является важной реакцией в получении фторсодержащих соединений [11]. Эти реакции служат и некоторым эталоном для выявления и уточнения деталей механизма фторирования. [c.32]

    В случае интернальных олефинов с различными по природе заместителями также происходит присоединение фтора по двойной связи. [c.32]

    Реагент 7 эффективен в реакциях с олефинами и дает продукты присоединения фтора по кратной связи. [c.79]

    Непрерывное увеличение цен на сырую нефть и нефтепродукты, значительное расширение производства моторных алкилатов и растущие требования к их качеству приводят к необходимости разработок высокоэкономичных и эффективных каталитических систем, использование которых не только уменьшит капитальные и эксплуатационные затраты, но и позволит применять более дешевое углеводородное сырье. Обнадеживающие результаты дали ациклические олефины фтор-сульфоновой кислоты [276-278], ее комплекс с пятифтористой сурьмой [279] и смеси фтористоводородной кислоты с пятифтористой сурьмой [280] в процессах алкилирования парафиновых углеводородов. [c.43]


    Для реакции замены галоида применяют также фториды свинца, ртути и кобальта [2, 18, 20]. Лучше всего их получать in situ реакцией соответствующей окиси с фтористым водородом, обычно для этого требуется применение аппарата под давлением. Наиболее высокая степень фторирования достигается при применении ртути, самая низкая — при применении марганца. Действие фторида ртути аналогично действию трехфтористой сурьмы. Лучше всего фторид ртути применять с алкилбро-мидамн, поскольку алкилхлориды реагируют очень медленно. Фториды свинца и марганца требуют проведения реакции при гораздо более высоких температурах и вообще являются неудовлетворительными агентами реакции обмена. Одпако они полезны при проведении реакции присоединения фтора к галоидированным олефинам и широко применяются для этой цели. [c.75]

    Необходимо подчеркнуть, что, по всей вероятности, невозможен один ряд катализаторов с одинаковой во всех случаях каталитической активностью. Так трехфтористый бор слабо соединяется с ионом хлора, однако он проявляет большое сродство к иону фтора. По-видимому, это вызывается стерическими затруднениями ион B l весьма неустойчив, а ионы ВГГ и Al ir вполне стойки. Поэтому трехфтористый бор не катализирует реакцию циклогексилбромида с бепзолом [72], однако он весьма сильно катализирует реакцию циклогексилфторида с ароматическими соединениями [712]. Поэтому трехфтористый бор является активным катализатором по отношению к спиртам, олефинам и фторпроизводным и может занять первое место в ряду с более активными катализаторами. С другой стороны, в реакциях, использующих алкилхлориды или алкилбромиды, он не является эффективным катализатором и должен занять поэтому одно из последних мест. [c.429]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]

    Катализаторами изомеризации олефинов в растворах являются комплексы ВРз (с фтористым водородом, диэтиловым эфиром, водой), сильные органические кислоты (хлор-, фтор- и этансульфоно вая), галогениды Ре, А1, Pd, НИ с кислотными свойствами. Как правило, эти катализаторы активируют процессы цис-транс-шош риза-ции, миграции двойной связи и перемещения алкильных групп по углеродной цепи без изменения длины цепи. [c.89]

    В 1932 г. В. И. Ипатьев показал возможность осуществления реакции взаимодействия с олефинами изобутана, считавшегося до того инертным углеводородом. В качестве катализатора был использован Ai l,. Эта реакция, разработанная затем с применением других катализаторов, — серной кислоты и позднее фтори стого водорода — была быстро внедрена в промышленность. [c.330]


    С. В. Завгородний и В. Г. Вахтин изучили алкилирование фтор-, хлор- и бромбензолов бутеном-2 [94] и фторбензола пропиленом и циклогексеном [95] в присутствии BF3 Н3РО4. Как показали исследования, моногалоидбензолы, как и алкилбензолы, алкилируются олефинами с образованием п-алкилгалоидбензолов. Выход их понижается от фторбензола к бромбензолу. [c.117]

    Н3РО4 при температуре 30—70° С, подобно о-хлоранизолу, образует по одному продукту, но с более низким выходом, чем в реакции с фтор- и хлоранизолами. Причем при более низкой температуре (30° С) лучше идет алкилирование тг-броманизола буте-ном-2, а при 70° С более высокий выход продукта получается с пропиленом. Наиболее подходящими условиями, из изученных, при которых 2-изопропил-4-броманизол и 2-втор.бутил-4-бромани-, зол получаются с выходом соответственно 64,5 и 58% от теоретического, являются молекулярные отношения .-броманизола, олефинов и ВЕз-НзР04, равные 3 1 0,3, температура 70° С для пропилена и 30° С для бутена-2, скорость введения олефинов 10— 20 час моль. [c.227]

    Вероятно, процесс идет аутокаталитически, так как фтор стимулирует реакцию конденсации. По такому направлению с фтором реагируют и все олефины, но в общем закономерности этих процессов изучены еще недостаточно. [c.768]

    Робертс (1953) расширил область применения этой реакции, осуществив циклоприсоединение фенилацетилена к фторированным олефинам, и нашел способ последующего удаления атомов галоида. Так, при конденсации фенилацетилена с 1,1-дихлор-2,2-дифторэтиленом образуется производное циклобутена I. При дейстзии на соединение I серной кислоты происходит гидролиз атомов фтора и получается 2,2-дихлор-енон II, который в присутствии триэтиламина претерпевает аллильную перегруппировку с образованием изомерного 2,4-дихлоренона III  [c.33]

    Присоединение Н F к олефинам происходит очень легко, однако сопровождается побочными реакциями полимеризации олефинов. Следы кислот и воды или температура около 70° С вызывает Отщепление НГ от образовавшихся фтористых алкидов. Препаративное вначенце имеет присоединение HF к хлорзамещенным олефинам, которые тем менее склонны к полимеризации в его присутствии, чем больше атомов хлора связано ненасыщенными атомами углерода. Фтористый водород легко присоедигогэтсй и несимметричным галогензамещенпым олефинам, таким, как СН3 = СНХ, R H= СХ 3 или RGX—СНа, труднее к олефинам, имеющим атомы галогена у обоих ненасыщенных атомов углерода. Реакция ускоряется в присутствии BFS, который образует комплексное соединение и тем самым облегчает отрыв протона от молекулы НГ однако одновременно ускоряются параллельно протекающие реакции обмена галогена на фтор и смолообразование в результате полимеризации [173]. [c.113]

    Присоединение иода, как правило, ие удается осуществить из-За пониженной активности зт0(Г0 галогена (ср. разд. Г,4.1.1). Оно протекает удовлетворительно только в случае очень реакционноспособных олефинов (например, для стирола, аллилового спирта и др.). Напротив, взаимодействие фтора с двойными углерод-углеродными связями происходит так энергнчно, что олефин распадается яа осколки с меньшнм числом углеродных атомов. [c.337]

    Образование сложных эфиров. В зависимости от применяемого катализатора — хлористого алюминия, промотированного хлористым водородом, фтористого водорода или серной кислоты — продукты алкилирования иногда содержат небольшие количества соединений хлора, фтора или серы. Эти соединения обьпшо представляют алкильные сложные эфиры, образовавшиеся в результате присоединения хлористого водорода, фтористого водорода или серной кислоты к олефину. Их образование неизбежно сопутствует второй стадии механизма первичного алкилирования. При условиях, не благоприятствующих дальнейшему взаимодействию этих сложных эфиров с изонарафи-новыми углеводородами (нанример, реакциям стадии 1 или стадии 3), они остаются в алкилате в качестве примесей. Как правило, они образуются при тех же условиях, которые способствуют усилению полимеризации в результате алкилирования. При рационально выбранных условиях образование сложных эфиров крайне незначительно при промышленных процессах алкилат подвергают очистке для удаления образовавшихся сложных эфиров, [c.189]

    Техника безопасности. Низкомолекулярные фторированные алкены, кетены н аллены при комнатной температуре обычно представляют собой газы. Следовательно, при работе с этими реагентами желательно обеспечить хорошую вентиляцию, особенно ещ,ё и потому, что тетрафторэтилен, трифторхлорэтилен и кетен так же, а может быть и более токсичны, чем фосген. С фторированными алкенами и нх циклоаддуктами следует обращаться осторожно, особеино если они могут содержать даже в виде следов) Олефины с атомом фтора у атома углерода при двойной связи. Фторированные олефины, как правило, следует рассматривать кйк весьма токсичные вещества. Особенно перфторизобутилен, который является смертельным ядом, причём действие его проявляется весьма коварно и внезапно. Как известно, перфторизобутилен образуется в результате термических превращепий тетрафторэтллена и политетрафторэтилена. [c.36]

    Вклады атомов или групп атомов в наблюдаемый эффект Коттона приблизительно пропорциональны их атомным ре-4 акциям (см. Рефракция молярная). Для связи С—Н этот параметр мал, поэтош им пренебрегают при интерпретации спектров ДОВ и КД. Атомная рефракция фтора меньше, чем водорода, благодаря чему вклады связей С — F должны характеризоваться противоположным знаком, что и наблюдалось экспериментально. Положит, вклады в эффект Коттона дают С1, Вг, группа СНз, отрицательные - фтор. Аналогичные правила предложены для др. хромофоров (олефинов, лакто-нов, тиоцианатов, нитрозосоединений, ароматич. соед.), что позволяет коррелировать данные ДОВ и КД с конфигурацией и кон рмацией этих соединений. Указанные правила связаны с эффектом Коттона изолированных хромофоров. Однако если в молекуле имеется более одного хромофора, то между ними возможно взаимодействие. Эго приводит к появлению в спектрах ДОВ или КД в области полосы поглощения изолированного хромофора дщ х полос (куплет КД) примерно одинаковых по интенсивности, но противоположных по знаку (так называемое экситонное расщепление). [c.277]

    Фтористые алкилы были получены реакцией между элементарным фтором и парафинами присоединением фтористого водорода к олефинам реакцией алкилгалогенндов с фтористой ртутью , с двухфтористой ртутьюс фтористым серебром ь или с фтористым калием под давлением Изложенная методика основана на способе Гофмана , который заключается во взаимодействии безводного фтористого калия с алкилгалогенидом при атмосферном давлении в присутствии этиленгликоля, который берется в качестве растворителя неорганического фторида. Получаемый фтористый алкил обычно содержит небольшую примесь олефина, которую легко удалить обработкой раствором брома и бромистого калия. Опубликован обзор методов получения алкилмонофторидов [c.70]


Смотреть страницы где упоминается термин Олефины фтора: [c.110]    [c.107]    [c.70]    [c.205]    [c.220]    [c.221]    [c.221]    [c.234]    [c.121]    [c.214]    [c.45]    [c.93]    [c.113]    [c.51]    [c.255]    [c.638]    [c.222]    [c.496]    [c.264]    [c.384]    [c.139]    [c.159]    [c.181]   
Новые методы препаративной органической химии (1950) -- [ c.8 , c.10 ]




ПОИСК







© 2024 chem21.info Реклама на сайте