Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенилаланин расщепление

    Для специфического расщепления белков по определенным точкам применяются как ферментативные, так и химические методы. Из ферментов, катализирующих гидролиз белков по определенным точкам, наиболее широко используют трипсин и химотрипсин. Трипсин специфично катализирует гидролиз пептидных связей, расположенных после положительно заряженных аминокислотных остатков лизина и аргинина. Химотрипсин преимущественно расщепляет белки после остатков ароматических аминокислот — фенилаланина, тирозина и трипто- [c.269]


    Курциус пр имвнил реакцию расщепления азидов кислот для синтеза глицина, аланина, валина и фенилаланина. [c.662]

    На основании полученных данных авторы делают вывод, что по крайней мере в некоторых высших растениях происходит расщепление бензольного кольца тирозина. Последний они называют глюкогенной аминокислотой. Введение в листья груши в аналогичных условиях С -фенилаланина приводит к его превращению в производные коричной кислоты (в частности, в хлорогеновую кислоту), но не к расщеплению бензольного кольца. [c.229]

    При питании больных диабетом (или животных, у которых диабет был вызван искусственно при помощи флоризина) индивидуальными аминокислотами наблюдалось, что большинство аминокислот вызывает повышенное выделение глюкозы и лишь некоторые (лейцин, изолейцин, фенилаланин и тирозин) дают ацетон и аце-тоуксусную кислоту, являющиеся, как известно, метаболитами жиров (том I). Следовательно, аминокислоты делятся на глюкогенные и кетогенные. (Продукты превращения следующих четырех аминокислот неизвестны лизина, метионина, триптофана и гистидина.) Отсюда следует, что в процессе расщепления аминокислот в организме некоторые аминокислоты включаются, начиная с определенной стадии, в обмен углеводов, а другие —в обмен жиров. Ниже мы опишем вкратце начало процесса расщепления аминокислот в живых организмах. [c.387]

    Химотрипсин — наиболее хорошо изученный протеолитический фермент. Он катализирует гидролитическое расщепление пептидной (или сложноэфирной) связи, в образовании которой принимают участие фенилаланин, тирозин или триптофан. Образование химотрипсина происходит в поджелудочной Железе первоначально образуется неактивный химотрипсиноген (зимоген) — резервная форма фермента. Основной компонент, химотрипсиноген А, представляет собой полипептидную цепь из 245 аминокислотных остатков и 5 дисульфидных мостиков. Активация и образование активного о -химотрипсина осуществляются сложным путем. После триптического расщепления связи Аг -11е последовательно одии за другим из молекулы отщепляются дипептиды 8ег -Аг и ТЬг -А5п . В результате одноцепочечный предшественник переходит в трехцепочечную молекулу фермента. Цепи А, В и С химотрипсина соединены исключительно дисульфидными связями. Рис. 3-32 показывает пространственную модель химотрипсина, установленную на основе рентгеноструктурных данных. [c.408]

    Из природных аминокислот этому условию удовлетворяют остатки лизина и аргинина. В случае химотрипсина этот остаток должен содержать гидрофобный, предпочтительно ароматический радикал. Поэтому расщепление преимущественно проходит по остаткам фенилаланина, тирозина и триптофана. В случае эластазы расщепление проходит, если боковой радикал имеет небольшой размер, главным образом по остаткам глицина и аланина. Эта специфичность определяется структурой полости, в которой размещается боковой радикал атакуемого аминокислотного остатка для осуществления необходимой ориентации относительно каталитического центра фермента. [c.205]


    Подготовка к расщеплению кольца. Большинство природных ароматических соединений расщепляется бактериями сначала до пирокатехина (катехола) или протокатеховой кислоты. Расщеплению до пирокатехина подвергаются многие соединения, у которых в ароматическом кольце имеется либо один заместитель, либо два заместителя в положе ниях 1 и 2, т.е. такие вещества, как миндальная кислота, фенилаланин, толуол, бензол, фенол, бензойная и салициловая кислоты. [c.425]

    Расщепление рацемических аминокислот на антиподы через их Ы-ацильные производные впервые использовал в своих классических работах Э. Фишер. Еще в конце прошлого века он получил этим путем 1-аланин, а затем и многие другие оптически активные аминокислоты, входящие в состав белковых веществ. Фишер особенно часто пользовался бензоильной или формильной защитой аминогруппы. Многие расщепления аминокислот проведены, однако, и с использованием иных защитных групп — ацетильной, п-нитробензоиль-ной, тозильной и других. Так, тозильную защиту использовали в одной из работ по расщеплению серина фталильную — при расщеплении а-аминомасляной кислоты с использованием эфедрина в качестве оптически активного основания п-нитро-фенилсульфенильную защиту — при расщеплении фенилгли-цина, фенилаланина, пролина с эфедрином, псевдоэфедрином или основанием левомицетина в качестве оптически активных оснований. При расщеплении многих рацемических аминокислот оказалась полезной карбобензоксизащита. [c.103]

    Как показали А. Н. Белозерский и Т. С. Пасхина, при длительном гидролизе грамицидина кипящей 20%-ной соляной кислотой происходит расщепление молекулы с выделением пяти аминокислот . /-пролина (1), /-валика (П),. /-орнитина (П1),. /-лейцина (IV) и -фенилаланина (V)  [c.739]

    Сорбция субстрата в активном центре а-Х, обеспечивается гвдрофобной полостью. Ее размеры 1,0x0, 5x0,4 нм оптимальны для связывания боковых цепей остатков гвдрофобных аминокислот (триптофан, фенилаланин, лейцин, тирозин), а конфигурация допускает лишь определенную ориентацию субстрата. Механизм каталитич. гвдролиза включает стадию сорбции субстрата, расщепления пептвдной связи с образованием ацилфермента и послед, переноса ацильной фуппы на нуклеоф. акцептор. [c.263]

    М. М. Ботвиник и В. И. Остославская предложили проводить одновременно с расщеплением рацемических аминокислот на антиподы синтез оптически деятельных пептидов. При действии на гликолевый эфир К-карбобензокси-ОЬ-фенилаланина этиловым эфиром ОЬ-аминокисло- [c.456]

    При действии бромной воды на окситоцин происходят окисление обеих половин цистиновых остатков в р-сульфо-аланильные остатки, бромирование тирозина и расщепление тирозилизолейцильной связи. Направление реакции с бромной водой не зависит от присутствия в цепи окситоцина остатка изолейцина, так как в вазопрессине, который вместо изолейцина имеет фенилаланин, окисление бромной водой приводит к тем же результатам [242]. При расщеплении вазопрессина происходит заметное разложение и удается выделить только один крупный пептидный фрагмент. [c.224]

    Определение числа пептидных цепей в белке путем количественного измерения скорости отщепления аминокислот может оказаться ненадежным, если два соседних аминокислотных остатка отщепляются почти с одинаковой скоростью. Это наблюдается в случае ростового гормона быка, в котором два остатка фенилаланина быстро отщепляются карбоксйпеп-тидазой, после чего происходит отщепление аланина, лейцина и серина. В этом белке имеются два К-концевых остатка, но расщепление гидразином позволило обнаружить только один С-концевой остаток фенилаланина. Полученные при расщеплении белка карбоксйпептидазой результаты объясняются тем, что С-концевой участок имеет состав —Фе.Фе.ОН [198]. [c.234]

    Для животного организма витамин Вс является важнейшим витамином, входящим в состав ферментов, катализирующих белковый обмен он выполняет важную функцию в превращениях аминокислот. Для каждого животного организма необходимо получать с пищей некоторые аминокислоты (например, для человека незаменимы валин, лейцин, нзолейшш, лизин, треонин, метионин, фенилаланин, триптофан), которые он не в состоянии синтезировать все же другие необходимые аминокислоты синтезируются организмом нз продуктов расщепления белков или из а-кетокислот. [c.355]

    Эрготамин является важнейшим представителем алкалоидов этой группы, он может быть расщеплен с образованием лизергиновой кислоты, фенилаланина, 2-оксиаланина и пролина  [c.676]

    Очевидно, что N-концевые группы всех Т-пептидов отличаются от N oнцeвыx групп С-пептидов, поскольку использованные для расщепления ферменты действуют по разным точкам. Исключение составляют пептиды, полученные из 1S-конца исходной цепи, они должны иметь одинаковое начало. Из рассмотрения приведенных в табл. 7.4 структур видно, что таковыми являются пептиды Т-10 и С-5. При этом пептид Т-10 входит в состав С-5, который в дополнение к Т-10 содержит остаток F (фенилаланин). Следовательно, пептид серии Т, примыкающий с С-конца к Т-10, должен начинаться с фенилаланина. Таковым в приведенной серии является только пептид Т-4, т.е. последовательность трипсиновых фрагментов с N- toнцa молекулы Т-10, Т-4. Этот <двойной> Т-пептид содержит весь пептид С-5 и сверх того фрагмент ER. Следовательно, к С-5 должен примыкать пептид С-7, начинающийся с этих двух аминокислотных остатков. Следующая за аргинином основная часть пептида С-7 является N-концевой частью пептида Т-14, который примыкает в исходной структуре к Т-4. Восстановленная таким путем N-концевая последовательность рибонуклеазы приобретает вид Т-10, Т-4, Т-14. Последний содержит остаток тирозина (Y), т е. точку расщепления химотрипсином. Поэтому третий слева пептид группы С должен начинаться с последовательности NqMNK. Это позволяет записать блок С-пептидов на N-конце в виде G-5, С-7, С-9. Пептид С-9 содержит в своем составе сразу несколько Т-пептидов — [c.274]


    Приведенный пример является вполне <благополучным> в том смысле, что нигде не возникает неоднозначностей в принятии решения по объединению пептидов. Нетрудно, однако, убедиться, что если бы, например, в серии С хептидов оказалось два пептида, имеющих на N-конце дипептид ER, то осталось бы неясным, какой из них примыкает к С-концу пептида С-5. Точно так же, что еще более вероятно, если бы в серии Т-пептидов имелось два (или более) пептида, начинающихся с остатка фенилаланина, то осталось бы неясным, какой пептид примыкает к С-концу пептида Т-Ю. Вероятность таких совпадений повышается с ростом размера белка, чему сопутствует рост числа пептидов, образующихся при трипсиновом, химотрипсиновом или каком-либо другом специфичном расщеплении. Как уже говорилось, в этом случае приходится прибегать к большему числу вариантов специфического расщепления цепи. [c.275]

    Осуществленный таким способом гидролиз пептидньк связей-это необходимый шаг в определении аминокислотного состава белков и последовательности составляющих их аминокислотных остатков. Пептидные связи могут быть гидро-лизованы также под действием некоторых ферментов, таких, как трипсин и химотрипсин, представляющие собой протеолитические (белок-расщепляю-щие) ферменты, секретируемые в кишечник и способствующие перевариванию, т. е. гидролитическому расщеплению, белков, входящих в состав пищи. Если кипячение пептидов с кислотой или щелочью приводит к гидролизу всех пептидных связей независимо от природы и последовательности соединенных при их помощи аминокислотных звеньев, то трипсин и химотрипсин осуществляют каталитическое расщепление пептидов избирательным образом. Трипсин гидролизует только те пептидные связи, в образовании которьсс участвуют карбоксильные группы лизина или аргинина. Химотрипсин же атакует только те пептидные связи, которые были образованы с участием карбоксильных групп фенилаланина, триптофана и тирозина. Как мы увидим дальше, такой избирательный ферментативный гидролиз оказьшается очень полезным при анализе аминокислотных последовательностей белков и пептидов. [c.130]

    Расщепление полипептидной цепи на фрагменты проводят обычно при помощи протеолитических ферментов, таких, как трипсин, химотрипсин или пепсин. Эти ферменты действуют на различные участки полипептидной цепи, так как имеют повышенное сродство к различным аминокислотным остаткам. Необходимо учитывать также соседние аминокислотные остатки, т. е. пространственное окружение атакуемой пептидной связи. Оказалось, что трипсин гидролизует только те пептидные связи, в образовании которых участвует карбоксильная группа лизина или аргинина, а химотрипсин гидролизует связи по фенилаланину, триптофану и тирозину Обычно протеолитические ферменты, гидролизующие полипептидные цепи, предварительно иммобилизуют на нерастворимых матрицах для более легкого отделения их от продуктов гидролиза. Далее определяют аминокислотные последовательности каждого полипептидного фрагмента. Для этого чаще всего используют метод Эдмана, заключающийся в анализе полипептида только с Ж-конца. Концевая аминокислота при взаимодействии с фенилизотиоцианатом в щелочной среде образует стойкое соединение, которое можно отщепить от полипептида без его деградации. Фенилтиогидантоиновое (ФТГ) производное аминокислоты идентифицируется хроматографическим методом. После идентификации концевого Ж-амино-кислотного остатка метка вводится в следующий аминокислотный остаток, [c.41]

    Наряду с трипсином из яоджелудочной железы выделяют другую сериновую протеиназу — химотрипсин. Используемый для структурных исследований а-кимотрипсин А проявляет максимальную активность в диапазоне pH 7,8 — 9,0. Химотрипсин обладает гораздо более широкой специфичностью, чем трипсин. Фермент преимущественно катализирует гидролиз пелтидиык связей, образо< ванных карбоксильными группами ароматических аминокислот — тирозина, фенилаланина и триптофана. С меньшей скоростью гидролизуются пептидные связи лейцина, метионина, гистидина. Скорость расщепления отдельных связей в белках и пептидах зависит от характера соседних аминокислотных остатков. [c.45]

    Предположим, что имеется октаиептпд Ала-(Глу-Вал-Тре-Фен-Лей-Гпс)-Сер, причем известно, что аланин и серии являются соответственио Ы- и С-копцевыми остатками. Кроме того, установлено наличие остальных аминокислот, но не известна их последовательность. Для селективного расщепления пептидной цепи необходимо использовать целый ряд методов. Например, фермент химотрипсин будет катализировать гидролиз лишь пептидной связи, включающей в себя карбоксильную группу фенилаланина. Предположим, что при этом образуется пеита-пептид (Глу-Вал-Тре-Лей)-Сер. В таком случае мел сразу узна- [c.374]

    Значительно слабее использовались кофейная, синаповая, лета-метоксикоричная, пара-оксикоричная, фенилуксусная, протокатеховая и пяра-оксибензойная кислоты. Тирозин в отличие от фенилаланина оказался плохим предшественником кверцетина. Все испытанные соединения использовались для образования кольца В кверцетина (после расщепления кверцетина была активна только вератровая кислота). [c.170]

    С другой стороны, известны ферменты, которые проявляют относительно широкую специфичность и взаимодействуют со многими веществами, имеющими общие структурные особенности Например, химотрипсин катализирует гидролиз многих пептидов и полипептидов, но разрывает только те пептидные связи, в которых карбонильная группа принадлежит остаткам фенилаланина, тирозина или триптофана (табл. 6-6). Несколько иная ситуация имеет место в случае кишечной фосфатазы, катализирующей гидролиз самых разных эфиров фосфорной кислоты, хотя скорости их расщепления сильно различаются. Изучение субстратной специфичности ферментов привело к возникновению идеи о комплемен-тарности молекулы субстрата й специфического участка на поверхности молекулы фермента, когорые лодходят друг к другу, как ключ к замку. К этому участ- [c.241]

    Тирозин-заменимая аминокислота, но у животных он образуется из незаменимой аминокислоты фенилаланина путем гидроксилирования фенильной группы в положении 4 эта реакция катализируется фенилаланин-4-монооксиге-назой, которая принимает участие также и в расщеплении фенилаланина [c.656]

    Для пептидов, содержащих ароматические и (или) гетероциклические аминокислоты (фенилаланин, тирозин, триптофан и гистидин), характерны следующие типы расщепления а) частичное элиминирование боковой цепи в виде АгСНг в процессе фрагментации по аминокислотному типу б) первоначальный разрыв связи N—ароматического или гетероциклического аминокислотного остатка с последующим аминокислотным типом фрагментации образовавшегося иона с) элиминирование боковой цепи в виде АгСНг (например, в виде иона тропилия в случае фенилаланина). Все три процесса наиболее отчетливо проявляются у триптофансодержащих пептидов [13]. [c.196]


Смотреть страницы где упоминается термин Фенилаланин расщепление: [c.94]    [c.496]    [c.496]    [c.475]    [c.151]    [c.182]    [c.113]    [c.17]    [c.357]    [c.600]    [c.289]    [c.300]    [c.42]    [c.475]    [c.272]    [c.273]    [c.174]    [c.178]    [c.182]    [c.184]    [c.233]    [c.206]    [c.200]   
Основы биохимии Т 1,2,3 (1985) -- [ c.577 , c.578 , c.579 , c.580 ]




ПОИСК





Смотрите так же термины и статьи:

Фенилаланин

Фенилаланин Фенилаланин



© 2024 chem21.info Реклама на сайте