Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептиды анализ

    Вторичная структура белка — форма полипептид-ной цепи в пространстве. С помощью рентгеноструктурного анализа и других физических методов исследования установлено, что полипеп-тидные цепи природных белков находятся в скрученном состоянии — в виде спирали. Спиральная структура удерживается водородными связями, возникающими между группами СО и NH аминокислотных остатков соседних витков спирали (на рис. 18.1, а обозначены пунктиром). Подобная вторичная структура получила название а-спирали (рис. 18.1, а). Водородные связи в ней направлены параллельно длинной оси спирали (а-спирали чередуются с аморфными частями). [c.352]


    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]

    Прежде чем перейти к методам, которые химики применяют для разрушения ( анализа ) и получения ( синтеза ) биологически активных полипептидов, рассмотрим три полиамида, представляющие интерес с медицинской точки зрения,— окситоцин, вазопрессин и инсулин. Обратите внимание на то, что аминокислотная последовательность двух из них почти одинакова, хотя они выполняют совершенно различные физиологические функции. Все три полипептида содержат дисульфидную связь (—8—3—) и утрачивают [c.401]

    При работе с новым видом сорбента или с новой партией следует упаковать сначала короткую колонку (10—12 см) при относительно невысоком давлении (20—25 МПа). При хорошем результате можно попытаться упаковать более длинную (200—250 мм) колонку при высоком давлении (40—60 МПа). Если эффективность увеличится примерно вдвое одновременно с увеличением сопротивления потоку в два раза, значит сорбент прочен, его можно использовать при таких параметрах набивки. Если сопротивление потоку возрастет в 2,5—6 раз, это значит, что сорбент непрочен и разрушается, образующаяся пыль резко увеличивает сопротивление колонки, нужно снижать давление при набивке. Особую осторожность следует проявлять при выборе давления для набивки силикагелей с широкими порами (более 10 нм) и с большим объемом пор, которые находят все более широкое применение в эксклюзионной хроматографии полимеров и в анализе биологических объектов — белков, полипептидов и др. [c.118]


    Наиболее успешным методом определения С-концевых остатков является не химический метод, а ферментативный. Селективное удаление С-концевого звена осуществляется при помощи фермента карбоксипептидазы (из поджелудочной железы), которая расщепляет лишь ту пептидную связь,которая расположена в а-положении к свободной а-карбоксильной группе в полипептид-ной цепи. Анализ можно повторить на укороченном пептиде с тем, чтобы идентифицировать новый С-концевой остаток и т. д. [c.1049]

    Ввиду того, что различия в растворимостях полипептидов очень невелики, для выделения индивидуальных пептидов и.з смесей требуются специальные методы. К ним относятся фракционный диализ, распределительная хроматография (например, на колонке из бумажного порошка или листе бумаги), адсорбционная хроматография, ионнообменная хроматография, электрофорез и противоточное распределение по Крэйгу (т. е. распределение между двумя ограниченно смешивающимися жидкостями). Для характеристики выделенных пептидов и доказательства их однородности применяют противоточное распределение, количественный анализ аминокислотного состава и определение концевых групп полипептидной цепи. [c.383]

    Развитие методов гельфильтрации, ионообменной хроматографии, ультрацентрифугирования, а также разработка и автоматизация методов анализа первичной структуры макромолекул позволили в сравнительно короткие сроки расшифровать последовательность аминокислотных остатков в токсических полипептидах большинства змей. [c.57]

    ДИНИТРОФТОРБЕНЗОЛ (N02)2 eH3F, желтоватые крист. t 27°С, IK n 128°С/2 мм рт. ст. раств. в орг. р-рителях. Легко взаимод. с нуклеоф. реагентами (замещается атом F). Получ. нагреванием 2,4-дииитрохлорбен-зола с KF. Реагент в анализе полипептидов. [c.176]

    АНАЛИЗ ПОЛИПЕПТИДОВ. Полипептиды, как и прочие амиды, можно гидролизовать водными растворами кислот или щелочей. После полного гидролиза полипептида можно при помощи аминокислотного анализатора установить его качественный и количественный аминокислотный состав, но не точную последовательность аминокислот. Если перед гидролизом обработать полипептид реактивом Сэнгера, то можно будет затем идентифицировать его N-концевую аминокислоту, так как она даст устойчивое окрашенное производное анилина, которое не разрушается при гидролизе. [c.402]

    Исследование синтетических полипептидов, а также анализ известных белковых структур, полученных с помощью рентгеновской кристаллографии, показали, что некоторые аминокислоты, например глутаминовая кислота, аланин и лейцин, способствуют образованию а-спирали. Другие аминокислоты, в частности метионин, валин и изолейцин, чаще [c.97]

    В основе взаимодействия белков со стенкой лежит в основном механизм катионного обмена. Это возможно, поскольку и в случае отрицательного полного заряда молекулы (особенно при основных pH) всегда имеются в наличии катионные группы, например аргинин-радикалы в цепочках полипептидов. Поэтому путем добавления солей щелочных металлов (например сульфата калия) к буферу, как и в случае ионообменной хроматографии, достигается конкуренция кулоновскому притяжению и вызванное этим притяжением взаимодействие белок - стенка явно уменьшается. Следуя этой концепции, можно для стандартных белков в широкой области р1 (р1 5-11) достичь эффективности 50000-100000 тарелок на метр. И в этом случае недостатком является сравнительно высокая электропроводность буфера (эффективное охлаждение ) которая вынуждает использовать поля низкого напряжения (5 кВ) и длинные капилляры с маленьким внутренним диаметром (25 мкм). Кроме того, большие ионные силы уменьшают как ЭОП, так и -потенциал пробы, что вместе с вышеназванными факторами приводит к длительным временам анализа. [c.67]

    Книга во многом полемична. Так, в главе 18 рассматривается концепция Л.Б. Меклера о стереохимическом генетическом коде. Несмотря на то что прошло много лет с его первой публикации (а за ней были и другие), идеи Л.Б. Меклера, послужившие основанием для далеко идущих выводов, не получили прямого экспериментального развития. Излагая свой взгляд на причины такого положения, автор впервые дает критический анализ упомянутой концепции. В книге также ставятся под сомнение широко распространенные представления о роли водородных связей в формировании конформаций олиго- и полипептидов, отрицаются иерархичность структурной организации белков (от первичной структуры к вторичной, супервторичной, доменам и полной пространственной структуре) и целесообразность введения понятия "расплавленная глобула" для описания переходного состояния между нативным и денатурированным состоянием глобулярных белков. Несмотря на приводимую при этом весомую аргументацию, вряд ли перечисленные выводы будут легко приняты научной общественностью. Ответственный редактор надеется, что высказанные в томе положения будут замечены коллегами и вызовут дискуссию, которая пойдет на пользу науке. [c.5]

    Широкое использование теоретического подхода на основе рассмотренной механической модели для анализа конформационных возможностей молекул органических соединений началось в первой половине 1960-х годов, когда представилась возможность переложить большой объем вычислений на ЭВМ. Во второй половине этого десятилетия теоретический конформационный анализ стал применяться для исследования пространственного строения монопептидов и регулярных полипептидов. [c.113]


    Проблема структурной организации пептидов и белков включает в себя две противоположные по постановке задачи. Первая из них (назову ее прямой структурной задачей) связана с установлением пространственного строения и конформационных, динамических свойств природных олиго- н полипептидов по известной аминокислотной последовательности. Анализу различных аспектов и оценке перспектив развития существующих подходов к решению этой задачи посвящены все предшествующие главы книги. Цель обсуждаемой в заключительной главе второй задачи, названной мной обратной, состоит в целенаправленном конструировании химического строения молекулы, обладающей наперед заданной пространственной структурой. [c.542]

    Задача 37.19. Анализ продуктов гидролиза сальмина — полипептида, выделяемого из спермы лосося, дал следующие результаты  [c.1048]

    Возможность определения последовательности полипептида по последовательности коллинеарной нуклеиновой кислоты представляет не только чисто теоретический интерес. Дело в том, что в настоящее время особенно велик прогресс как в накоплении генетического материала, так и в расшифровке последовательности нуклеиновых кислот в то же время многие важные белки удается получить пока еще лишь в ничтожных количествах. Полный анализ [c.18]

    Кун и сотр. [33] И Монтрейл и Маллэ [34] впервые обнаружили глико-протеины в женском молозиве. Гот и сотр. [35] выделили из женского молозива недиализуемую гликонолипентидную фракцию, которая содержала 22% полипептида. Анализ углеводной части показал, что она содержит 43% гексоз, 15% гексозаминов, 9% 6-дезоксигексоз и 10% сиаловой кислоты (считая на сухой вес гликоиротеина). При фракционировании препарата методом хроматографии на колонках можно получить 5 подфракций. [c.265]

    Многие полипептиды и белки исследовались с помощью рептгепос1руктурного анализа. При этом были подтверждены некоторые характерные особенности их структуры. Наиболее часто встречаются два типа организованной вторичной структуры, хотя нередко молекулы белков имеют более беспорядочное строение. В а-.форме полиамидная цепь свернута в спираль, в [c.301]

    Расширение традиционного круга задач, переход от элементного к многоуровневому анализу систем, в которых структурными диницами анализа являются фрагменты молекул (функциональные группы, радикалы) или отдельные молекулы (аминокислоты в полипептидах, нуклеотиды в ДНК и РНК, макромолекулы в природных и синтетических полимерах) требует все более четкой и строгой оценки надежности результатов анализа и их квалифи- [c.5]

    Основываясь иа сравнительном анализе первичной структуры и физиологического действия, показавшем большое сходство нейротоксических полипептидов между собой, Lee (1970) объединил их общим термином — неи-ротоксин. [c.60]

    ТСХ модифицированных ароматическими заместителями аминокислот в последние годы предпочитают вести на пластинках с полиамидным покрытием, поэтому из обзора Нидервизера процитируем только методы фракционирования немодифицированных аминокислот. Разумеется, ни по чувствительности и воспроизводимости результатов, ни тем более по точности количественных определений ТСХ аминокислот не может конкурировать с современными аминокислотными анализаторами. Однако существует немало ситуаций, когда возможности ТСХ оказываются вполне адекватными поставленной задаче определение аминокислотного состава, сопоставление родственных полипептидов, выявление генетических различий, проявляющихся в замене каких-либо аминокислот, клинические анализы физиологических жидкостей и др. На рис. 160 показана приведенная в цитируемом обзоре картина распределения пятен носле двумерной ТСХ модельной смеси аминокислот на иластинках с сп-ликагелевым покрытием. На старт вносили но 1 мкг каждой из ал1И-нокислот в 0,5 мкл 0,1 М раствора НС1. Элюцию в нервом направленип проводили смесью хлороформа, метанола и 17 %-ного аммиака (2 2 1), а во втором — смесью фенола и воды (3 1 но массе). [c.482]

    Огромный шаг вперед в химическом анализе полипептидов был сделан в 1950 г., когда П. Эдман установил, что N-кoнцeвyю аминокислоту можно удалить при помощи фенилизотиоциаиата. В результате следующая за пей [c.403]

    Синтетические полипептиды, так же как и большинство полимерных веществ, не могут быть получены в виде правильных кристаллов. Наиболее упорядоченная структура таких полимеров возникает в вы сокоориен-тн рсванных пленках и нитях. В таких нитях и пленках образуются пачки параллельно расположенных цепей. Азимутальная ориентация пачек цепей или даже отдельных цепочек относительно оси, совпадающей с направлением длины цепи, 1не фиксирована. Поэтому пространственное положение отдельных звеньев цепочек не соответствует одной правильной трехмерной решетке. В этом смысле структура полимерной нити Или пленки менее упорядоченна, чем в пра вильном кристалле. Для таких структур методом рентгеноструктурного анализа невозможно определить координаты атомов, однако оказывается возможным уста нов Ить общие особенности конфигурации цепей в пачках. Большую помощь при этом оказывают косвенные данные о конфигурации молекул, полученные другими методами. [c.539]

    Молекула тропонина состоит из трех полипептидных цепей с мол. массами от 18 000 до 37 000 дальтон. Один полипептид (Т) прочно связывает тропонин с тропомиозииом в участке, расположенном приблизительно на одной трети расстояния от С- до N-конца, со стороны С-конца. Второй полипептид (I), входящий в состав тропонина, взаимодействует с актином в отсутствие ионов Са + и работает вместе с остальными двумя полипептидами, удерживая тропомиозин в таком положении, в котором он ингибирует гидролиз АТР. Когда третий полипептид (С-субъединица) присоединяет ионы кальция, то ингибирование прекращается и может начаться сокращение. Однако общая картина функционирования всей этой машины остается непонятной. По данным рентгеноструктурного анализа и электронной микроскопии [93, 94], при связывании кальция с тропонином тропомиозин отклоняется от S1 примерно на 20°, открывая активный центр для взаимодействия миозин — АТР—актин (рис. 4-24). Возможно, тропомиозин катится наподобие ролика вдоль поверхности актина, открывая центры одновременно в семи молекулах актина Если это действительно так, то какого рода мотор используется при этом и что не позволяет ролику упасть с актина Обо всем этом мы может только догадываться. Вполне возможно, что боковые цепи отдельных аминокислотных остатков тропомиозина, выступающие наподобие зубцов на субмикроскопической шестеренке, входят в комплементарные углубления актина. Тогда возникает вопрос почему связывание иона кальция с тропомиозииом приводит к тому, что тропомиозии начинает катиться , как ролик, по актину Мы знаем, что присоединение металлов к белкам может приводить к очень сильным конформационным изменениям (разд. В.8.в). Не исключено, что конформационное изменение С-субъединицы тропонина [c.325]

    В последующих главах рассматриваются результаты конформацион-1 0го анализа большой серии природных олигопептидов. Их пространст- енное строение практически полностью определяется взаимодействиями ежду близко расположенными в цепи остатками, и поэтому они представляют собой естественные объекты исследования средних взаимодействий. Здесь нельзя было ограничиться анализом единичных примеров в силу по крайней мере двух обстоятельств. Во-первых, изучение конформационных возможностей природных олигопептидов является, как станет ярно позднее, самым ответственным и сложным, но в то же время 1 иболее интересным этапом на пути к априорному расчету трехмерных структур белков. Очевидно, понимание пространственного строения и механизма спонтанной, быстрой и безошибочной укладки белковой последовательности в нативную конформацию невозможно без установления инципов пространственной организации эволюционно отобранных низко- лекулярных пептидов. Между природными олиго- и полипептидами нет четко очерченных границ, и количественная конформационная теория лее простых молекул является естественной составной частью конформационной теории более сложных соединений той же природы. Во-вторых, Й1ание пространственной организации и динамических конформационных свойств природных олигопептидов - гормонов, антибиотиков, токсинов и т.д. - необходимо -вакже для изучения молекулярных механизмов узнавания, действия и регуляции биосистем, выявления структурно-функциональных особенностей пептидов и белков. [c.233]

    Анализы Ы-концевой последовательности аминокислот этих субъединиц указывают на высокую гомологичность полипептидам с кислотными свойствами, с одной стороны, и полипептидам с основными свойствами — с другой это наводит на мысль, что белки каждого из этих семейств происходят от одного общего генетического предка (теория Оно — ОКпо). [c.60]

    Так как при статистическом анализе невозможно учесть взаимодействия боковых цепей и определить их конформации, то и нельзя на основе эмпирического подхода прийти к пониманию принципов пространственной организации белковой молекулы. Ведь именно сложнейшая, строго упорядоченная, однако не сводящаяся к регулярной, система взаимодействий боковых цепей специфична для каждого природного аминокислотного порядка, а поэтому только она и ответственна за практически беспредельное многообразие трехмерных структур белковых молекул и их динамических конформационных свойств. Реализующееся пространственное строение белка определяется конкретной аминокислотной последовательностью. В силу уникальности последней ее нативная геометрия непредсказуема на основе среднестатистических характеристик уже изученных белков. Вероятностный подход адекватен синтетическим полипептидам, строение и свойства которых статистичны и описываются равновесной термодинамикой и статистической физикой. Белок же в физиологических условиях однозначно детерминирован как в отношении своих конформационных свойств, так и функции, и должен являться объектом рассмотрения нелинейной неравновесной термодинамики. [c.80]

    При поиске решения структурной проблемы белка особенно вдохновляющими примерами явились результаты теоретических исследований Л. Полинга и Р. Кори регулярных структур полипептидов [53] и Дж. Уотсона и Ф. Крика двойной спирали ДНК [54]. В этих работах с помощью простейшего варианта конформационного анализа - проволочных моделей, получивших позднее название моделей Кендрью-Уотсона, а также ряда экспериментальных данных, прежде всего результатов рентгеноструктурного анализа волокон (в случае ДНК еще и специфических соотношений оснований Э. Чаргаффа), удалось предсказать наиболее выгодные пространственные структуры полимеров. Собственно, предсказана была как в случае пептидов, так и нуклеиновых кислот, геометрия лишь одного звена, которое в силу регулярности обоих полимеров явилось трансляционным элементом. Белок же - гетерогенная аминокислотная последовательность, и поэтому таким путем предсказать его трехмерную структуру нельзя. Но то обстоятельство, что простейший, почти качественный, конформационный анализ привел к количественно правильным геометрическим параметрам низкоэнергетических форм звеньев, повторяющихся в гомополипептидах и ДНК, указывало на большие потенциальные возможности классического подхода и его механической модели в описании пространственного строения молекул. [c.108]

    Другая серьезная проблема, возникающая при учете электростатических взаимодействий, связана с диэлектрической проницаемостью е. Выше отмечалось, что этот параметр характеризует макроскопическое свойство среды ослаблять взаимодействие зарядов, находящихся на большом расстоянии друг от друга. В конформационном анализе одной молекулы такая трактовка параметра е, строго говоря, теряет смысл. Тем не менее от использования диэлектрической проницаемости не отказались и вводят В расчет в виде эмпирического параметра, величина которого может существенно отличаться от величины известной физической константы. Определение е, используемой в конформационном анализе, связано с большими трудностями и вряд ли является однозначным. В отсутствие молекул растворителя в промежутке между близко расположенными атомами значение диэлектрической проницаемости определяется поляризуемостью взаимодействующих атомов и полем, создаваемым окружающими атомами и молекулами растворителя. Для неполярной среды Брант и Флори рекомендуют величину е = 3,5 [86]. Выбор был сделан при сопоставлении результатов конформационного анализа полипептидов с опытными данными. В работе Скотта и Шераги, посвященной конформационному анализу регулярных структур полипептидов, значение е варьируется от 1 до 4, что, однако, мало сказывается на профиле потенциальной поверхности [85]. Учитывая величину диэлектрической проницаемости в алкиламидах (е = 4), значения от 1 до 4 можно считать разумными при оценке электростатических взаимодействий атомов полипептидов в неполярных средах. В случае водных растворов значение зф должно быть больше, так как для самой воды е = 81 и, что весьма важно, вода при образовании водородных связей оттягивает на себя заряды атомов амидной группы. С. Кримм и Дж. Марк в расчете конформаций полипептидов с заряженными группами в водной среде использовали величину е, равную 10 [95]. В работе Е.М. Попова и соавт. [96] была рассмотрена возможность учета влияния растворителя на конформационное равновесие низкомолекулярных пептидов в рамках механической модели. Наилучшее совпадение с экспериментальными данными было получено при е = 4 для растворов в ССЦ, е = 6-7 - СНСЦ и е = 10 - Н2О. [c.119]

    Для проверки теории пространственной организации олигопептидов, физической молекулярной модели и расчетной схемы априорного конформационного анализа были использованы два подхода. Первый из них не требует для оценки результатов расчета знания экспериментальных фактов о пространственной структуре молекулы. Он основан на выборе для теоретического исследования таких объектов, расчет которых содержит внутренний, автономный контроль своих результатов. Как показано ниже, можно считать с высокой степенью вероятности, что решение конкретной задачи при наличии подобного контроля доводится до конца только при получении правильных результатов. Во втором случае достоверность метода подтверждается путем сопоставления данных теоретического конформационного анализа олигопептидных фрагментов с геометрией соответствующих участков трехмерной структуры белка, установленной с помощью рентгеноструктурного анализа. Поскольку разработанная автором конформационная теория белковых молекул включает все элементы теории пространственной организации олигопептидных молекул, то полное совпадение расчетной конформации с нативной структурой белка можно считать убедительным доказательствам справедливости теоретического подхода к априорному расчету пространственного строения не только природных полипептидов, но и олигопептидов. [c.290]

    Перед демонстрацией исключительных возможностей собственного подхода Меклер и Идлис "констатируют", что "сегодня молекулярная биология, исходя из аминокислотной последовательности даже такого маленького полипептида, ничего не может сказать ни о его трехмерной структуре вообще, ни о положении его S-S-связей в частности. Ибо огромное число степеней свободы этой полипептидной цепи исключает возможность рассчитать ее конформацию согласно законам физики и химии, например, исходя из величин энергий взаимодействий ее атомов. Согласно теории, которую мы разработали, трехмерная структура любого полипептида определяется биологически - совокупностью А-А-связей, образующихся между его аминокислотными остатками" [352. С. 47]. Эта цитата примечательна двумя высказанными в ней положениями. Первое свидетельствует о незнании авторами литературы, посвященной теоретическому конформационному анализу пептидов и белков, становление которого произошло в 1963 г. с появлением основополагающей работы Г. Рамачандрана и соавт. [356]. Прямым опровержением такого заявления Меклера и Идлис о неспособности физики и химии рассматривать подобные проблемы служат, во-первых, результаты расшифровки генетического кода трансляции, которые были получены как раз с помощью физики и химии, и, во-вторых, материал этой книги и ее библиография, насчитывающая многие сотни ссылок на теоретические конформационные исследования пептидов и белков. Второе положение касается не чисто научных, а в большей мере мировоззренческих вопросов. Оно возвращает читателя к казалось бы давно ушедшим временам, когда в материалистической философии серьезно обсуждалось существование механической, физической, химической и биологической особых форм движения материи, находящихся в субординационных отношениях. [c.540]


Смотреть страницы где упоминается термин Полипептиды анализ: [c.168]    [c.40]    [c.189]    [c.296]    [c.94]    [c.114]    [c.662]    [c.70]    [c.71]    [c.77]    [c.207]    [c.388]    [c.397]    [c.470]    [c.483]    [c.507]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.2 (0) -- [ c.402 , c.403 ]

Синтетические гетероцепные полиамиды (1962) -- [ c.265 ]




ПОИСК





Смотрите так же термины и статьи:

Полипептиды



© 2025 chem21.info Реклама на сайте