Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пористое кислорода

    В цилиндрический сосуд, снабженный газовым барботером из пористой пластинки и охлаждающим змеевиком, помещают 500 мл чистого циклогексана, свободно от ароматических соединений, и пропускают в час 30 л сернистого ангидрида и 15 кислорода. Сразу же после пуска газов прибавляют 50 мл 1,5 молярного раствора перуксусной [c.493]

    Пирофорные соединения, способные к самовозгоранию при контакте с кислородом воздуха, могут образовываться при хранении, транспортировании и переработки сернистых нефтей и нефтепродуктов на незащищенных поверхностях резервуаров, емкостей, трубопроводов. Пирофорные отложения обычно представляют собой смесь продуктов сероводородной коррозии, смолистых веществ, продуктов органического происхождения и механических примесей. Активность пирофорных отложений (способность к самовозгоранию) зависит от температуры окружающей среды, состава и места образования. Пористая структура пирофорных отложений и примеси органических веществ способствуют их бурному окислению. Особую опасность представляют пирофорные отложения, насыщенные тяжелыми нефтепродуктами и маслами, так как последние сами могут разогреваться, способствуя самовозгоранию пирофорных отложений. Активность пирофорных соединений возрастает с повышением температуры окружающей среды, хотя самовозгорание их возможно при любой, даже самой низкой температуре (отмечены случаи самовозгорания их при температуре воздуха минус 20°С). Это объясняется тем, что пирофорные соединения плохо проводят тепло, и теплота, выделяющаяся при первоначальном медленном окислении, аккумулируется в массе отложения, что приводит к ее разогреву до опасной температуры. [c.234]


    В производстве, а также при транспортировке, хранении и использовании кислорода возможны утечки как жидкого, так и газообразного кислорода. При этом в определенных условиях возможен контакт кислорода с самыми различными горючими материалами. Наибольшую опасность представляют органические материалы (дерево, древесные опилки, ветошь, материал теплоизоляции и т. д.), пропитанные жидким кислородом, а также пористые материалы, насыщенные газообразным кислородом, которые в определенных условиях способны воспламеняться и детонировать. Однако в ряде случаев эти характерные особенности кислорода не учитываются, что неоднократно приводило к взрывам в производстве кислорода и при работе с ним. [c.375]

    V 1. Уменьшение размера частиц катализатора. При одной и гой же пористости с уменьшением диаметра шарика облегчается проникновение внутрь его молекул кислорода, что ускоряет процесс выгорания остаточного глубинного кокса. [c.44]

    Этот метод определения kiu был использован Нордом б для лабораторного барботажного абсорбера, содержащего около 15 см жидкости. В аппарате происходила абсорбция кислорода растворами сульфита и однохлористой меди (см. раздел Х-3). Кислород вводили через пористый стеклянный диск. Согласно опытным данным, величина составила 0,0483 эквивалентов О2 на 1 л жидкости в 1 мин при давлении кислорода 1 атм. Отношение А 1ро,  [c.171]

    Материалы, допустимые для ограниченного применения в местах возможных утечек жидкого кислорода. К ним относятся асбестовые прокладки, электроизоляционная черная поливиниловая лента, маркировочные черные чернила, изоляционная хлопчатобумажная ткань (алюминизированная погружением), пористый политетрафторэтилен и др. [c.58]

    Расчеты проводили для начального содержания кокса 5,3%, содержания кислорода 23%, плотности газа 1,2-10" г/см , пористости 0,42, линейной скорости подачи газа V JS = 10 см/мин. Плотность катализатора и константы скорости взяты по данным работ [9, 16]. При выбранных значениях Ni = 0,505 10 г/см и iVj = 0,0122 г/см -мин значение к - изменяли от 0,0108 до [c.312]

    Линейный закон роста окисной пленки имеет место при высокотемпературном окислении в воздухе и кислороде металлов, окислы которых не удовлетворяют условию сплошности (щелочных и щелочно-земельных металлов, магния) или летучи и частично возгоняются при высоких температурах, что делает их пористыми (например, вольфрама, молибдена, а также сплавов, содержащих значительные количества этих металлов). [c.46]


    Загрузку печи тиглями с шихтой осуш ествляют через отверстия на фронтовой стенке печи. Отверстия в дальнейшем закладывают кирпичом и обмазывают глиной с песком. Загружаемая в тигли шихта получается смешением всех компонентов. Тигли изготовлены из пористого материала для того, чтобы реакционные газы могли выходить. Кроме того, через поры в тигле проникают газы, например, кислород, который участвует в реакции образования синего ультрамарина. Тигли имеют форму усеченного конуса с глухим днищем и съемной крышкой. Наружные размеры тиглей следующие высота 335—340 мм диаметр верхний 254—257 мм диаметр нижний 200—202 мм толщина стенок 15 мм масса тигля 5,2—5,5 кг. Крышки имеют следующие размеры диаметр 250—256 мм толщина 22—25 мм масса тигля 1,9—2,0 кг. Газопроницаемость тиглей должна быть 17—33 с. В тигель вмещается около 6,5 кг шихты. Всего в описываемую печь устанавливают 1100 тиглей. [c.164]

    Впервые катализаторы очистки газов в виде пакетов из множества тонких фарфоровых трубок-стержней, покрытых платиной и расположенных в шахматном порядке, разработаны в 50-е годы [49]. В плане создания пористых монолитных катализаторов интерес представляют исследования [44], проведенные во Франции в 50-х годах, по конструированию пористых (25%) керамических плит на основе ZrO и СаО с неупорядоченными каналами, получаемых методом порошковой металлургии. Указывалось на возможность широкого использования катализаторов на пористых плитах дп очистки инертных газов от кислорода и ряда других процессов. [c.183]

    Прокалка кокса при температурах 1200—1300°С приводит к возрастанию пористости на 5— 10% в результате удаления летучих веществ. Одновременно с этим происходит уплотнение материала с глубокими изменениями в структуре, приводящими к упрочнению его, а также увеличение содержания углерода с 91 до 96% и уменьшение количества водорода, серы, азота, кислорода и минеральных примесей. [c.170]

    Для установления закономерностей накопления остаточного кокса в центре частиц, определения его максимально возможной концентрации рассмотрим кинетические основы процесса выгорания кокса из пористого объема частиц. Допустим, что кокс выгорает из объема отдельной цилиндрической поры радиуса Я (рис. 33). Принимаем, что вначале внутренняя поверхность поры закоксована равномерно по всей длине. Через время т после начала регенерации часть поры до глубины Хг полностью освободилась от кокса. На участке Х —х , где происходит горение, в результате окисления расходуется кислород в точке Х2 концентрация его становится равной пулю. [c.74]

    Нефтяной кокс - высококачественный углеродистый материал - является конечным продуктом глубоких превращений нефтяных углеводородов при термической деструкции. По внешнему виду кокс представляет собой куски (или частицы) неправильной формы разного размера, черного цвета с металлическим блеском. Частицы кокса имеют развитую пористую структуру. Элементный состав кокса следующий 90-97% углерода, 1,5-8,0% водорода, остальное до 100% - азот, кислород, сера и металлы. [c.12]

    В реакционную трубку были впаяны две пористые кварцевые (№ 2) перегородки толщиной 15 мм па расстоянии 400 и 510 мм от входного конца трубки (рис. XV. 12). Навеску сжигали в токе кислорода при помощи двух газовых горелок или электропечи, передвигающейся на роликах, что позволило легко управлять подогревом образца. Улавливание окислов серы проводилось 1%-ным раствором перекиси водорода, а титрование 0,1 н раствором [c.411]

    Твердые вещества, наиболее пригодные для адсорбции, отличаются высокой пористостью, имеют хорошо развитую поверхность с большой эффективной площадью. В качестве адсорбентов применяют такие материалы, как уголь, глинозем, силикагель. Некоторые свойства поверхности, например, расположение кристаллов или присутствие на поверхности атомов кислорода со свободной электронной парой, способной создавать водородные связи, обусловливают хемосорбцию определенных видов молекул. Точная природа этих свойств поверхности еще недостаточно ясна, поэтому необходимы дополнительные исследования, позволяющие создать матери- [c.156]

    Если цинк применяют вместе с кобальтом, то он ингибирует реакцию свободнорадикального разветвления цепей и таким образом предотвращает сморщивание пленки. При этом образуются более пористые поверхности, так что пленка может поглотить большее количество кислорода до полного затвердевания поверхности. Количество используемого цинка составляет 0,01-1%, т.е. в 2-3 раза больше весового содержания Со.  [c.292]

    Скорость окисления возрастает при повышении содержания рас-творенкого кислорода (т. е. при увеличении давления) и улучшении эффекткв юсти смешения воздуха (или кислорода) с расплавленным парафином. Процесс проводят при давлении от 1 до 21 ат в колоннах, через нижнюю часть которых барботирует воздух, диспергированный пористыми керамическими плитами. Условия реакций могут изменяться в широких пределах. Иногда применяют растворимые катализаторы — стеараты цинка и марганца, нафтенат кобальта и, чаще всего, перманганат ка.гия (около 0,1%). [c.155]


    Среди сторонников органического происхождения нефти, как уже указано, выделяется особая группа ученых, которая исходит из представления о всякой залежи нефти как о первичном ее скоплении, т. е. если нефть в данное время мы находим в песках или пористых известняках, значит, в этих породах она и возникла. Известный геолог-нефтяник К. П. Калицкий выявляет в этом отношении наиболее крайнюю точку зрения. В своей книге Миграция нефти он говорит, что все сторонники теории передвижки нефти из одного пласта в другой исходят из одной основной мысли, по которой образование нефти в песках невозможно, так как в силу аэрации (проникновение воздуха) органический материал подвергается в них процессу окончательного разложения под действием кислорода воздуха. Он приводит ряд фактов, говорящих за возможное сохранение органического вещества в песках, и, следовательно, за возможность возникновения в них нефти. А раз это так, то нет, по мнению К. П. Калицкого, никакой нужды строить всякого рода предположения о перемещении нефти из одного п.таста в другой, тем более о передвижении ее с неведомых глубин. Для того чтобы подобное предположение оказалось соответствующим действительности, необходимо доказать, что в песках или известняках может происходить наконле- [c.184]

    Как известно, широкое применение для исследования свойств воды находит метод ядерного магнитного резонанса (ЯМР) на ядрах атомов водорода и кислорода ( Ю), имеющих ненулевой спин. Этот метод часто применяют для изучения состояния и свойств воды в пористых телах. Однако при этом возникают трудности интерпретации получаемых данных, что связано с существенным влиянием процессов, обусловленных гетерогенностью системы, наличием тонкодисперсной твердой фазы. Только правильный учет всех обсуждаемых в первом разделе многочисленных мешающих факторов позволяет получать надежную информацию о свойствах связанной воды толщине граничных слоев, параметрах ориентационного порядка и подвижности А10лекул. Обсуждается также и ряд еще нерешенных задач спектроскопии ЯМР. [c.228]

    Особенно большой интерес представляет обработка таких растворов, один или несколько компонентов которых сами способны осаждаться на подложках, образуя динамические мембраны. Подобное явление, называемое самозадержанием, часто встречается при фильтрации через пористые подложки сточных вод, а также загрязненных природных вод. Так, при пропускании через пористые керамические трубки бытовых сточных вод и воды из загрязненного озера химическое потребление кислорода (ХПК) в очищенной воде снижалось на 80— 90%, а бактерии задерживались практически полностью [99]. Предло- [c.85]

    Основной частью установки периодического действия является стеклянный цилиндрический реактор (1) барботажного типа ( 0=30 мм, Н= 300 мм), в который помещают гетерогенный катализатор. В нижнюю часть реактора подают воздух (кислород) через пористую пластину (2), обеспечивающую диспергирование воздуха. Обогрев реактора осуществляется с помощью нихромовой спирали (3), напряжение в которой регулируется ЛАТРом (4). Постоянство температуры обеспечивается контактным термометром (5) и электронным реле (6). Для улавливания и конденсации паров, уносимых с отработанным воздухом, реактор снабжен обратным холодильником (7). В реактор зафужают образец гетерогенного катализатора и порцию керосина. Включается обогрев и по достижению заданной температуры в реактор подается воздух или кислород из баллона (8). Этот момент принимают за начало реакции. Количество подаваемого кислорода измеряют ротаметром (9) и регулируют игольчатым вентилем(11). По окончанию опыта выключают последовательно обогрев, подачу воздуха или кислорода, и керосин выгружают через нижний отвод (10). [c.32]

    Опыты по нанесению катализатора на активированные угли, испытанию активности катализаторов и окислительной демеркаптанизации дизельного топлива проводили на установке непрерывного действия (рис.2.4). В качестве реактора используют стеклянную насадочную колонку (1) диаметром 20 мм и высотой 200 мм, снабжённую обратным холодильником и контактным термометром (2). Обогрев реактора осуществляют с помощью нихромовой спирали, регулирование температуры - контактным термометром и электронным реле (5) с точностью 0,5"С. В качестве носителей используют древесный уголь и активированные угли марок КАД-Д, АГ-3, АГ-5, СКТ, АР-3 в качестве катализатора - натриевые соли сульфофталоцианинов кобальта и полифталоцианина кобальта. Активированный уголь загружают в реактор одним слоем высотой 100 мм на пористую перегородку (10). Нанесение фталоцианина кобальта на активированные угли проводят путём циркуляции его 0,5 %-ного водного раствора через носитель при комнатной температуре. Подачу раствора катализатора и очищаемых углеводородов в реактор осуществляют перистальтическим дозировочным насосом (6), скорость подачи кислорода и воздуха в реактор измеряют ротаметром (8) и регулируют игольчатым вентилем. Через определённые промежутки времени в растворе определяют содержание фталоцианина кобальта на приборе ФЭК-56 по оптической плотности. [c.35]

    Тпт ш ПС является жаростойким металлом. Скорость его окисления при высоких температурах довольно высока. Процессы, протекающие при окислении титана, очень сложны. Известно, что чистый титан в атмосфере воздуха или кислорода начинает окисляться с заметной скоростью при температурах выше 50(Г С. При высоких температурах (700 1000" С) окалина пи поверхкостн титаиа пориста и даже склонна к отслаиванию. При окислении титана в воздухе по мере П0 и51шения температуры наблюдается переход от логарифмического к кубическому закону роста иленки, далее параболический, затем линейный и снова параболический закон. [c.143]

    Кривая, аналогичная линии 2 на рис. У-9, найдена для реакции между кислородом и углем (Викке ). На рис. У-1и показана полная скорость превращения кислорода А) в пористых частицах кокса, определенная Хидденом [c.178]

Рис. У-10. Скорость полного превращения для реакции первого порядка между кислородом воздуха (А) и пористым коксом с размером частпц 0,03 м при высокой температуре кокса и массовой скорости О,.32 кг сек (по Хиддену 9) Рис. У-10. <a href="/info/1465616">Скорость полного превращения</a> для <a href="/info/891867">реакции первого порядка</a> <a href="/info/1172143">между кислородом</a> воздуха (А) и <a href="/info/1272332">пористым коксом</a> с размером частпц 0,03 м при <a href="/info/1841704">высокой температуре кокса</a> и <a href="/info/90689">массовой скорости</a> О,.32 кг сек (по Хиддену 9)
    Процессы окисления протекают только на поверхности соприкосновения окисляемого вещества и кислорода. Вместе с тгм твердые вещества, особенно угли, способны адсорбировать ita своей поверхности газы, в том числе воздух. В твердых горючих пористых веществах при сильноразвитой поверхности с адсорбированным слоем воздуха, обогащенного кислородом, скорость окислительных реакций резко возрастает. Если теплоотдача во внешнюю среду сравнительно мала, то в пористом и алотеплопроводном веществе повышается температура, поэтому окислительные процессы ускоряются. Выделение большого количества тенла и самовозгоранпе. может наблюдаться также при процессах полимеризации, при некоторых биологических процессах, физических процессах (трении, ударе) и т. и. [c.142]

    Теоретические основы. Процесс основан на избирательном выделении полярных поверхностно-активных компонентов сырья — смолистых веществ, кислород- и серусодержащпх соединений, полициклических ароматических углеводородов на развитой пористой поверхности адсорбента. Высокая адсорбируе-мость полярных компонентов сырья на активном высокопористом адсорбенте обусловлена ориентационным и индукционным взаимодействием активных центров, находящихся на поверхности адсорбента, с полярными и поляризуемыми компонентами сырья. [c.244]

    В уравнениях (VIII.24) и (VIII.25) р — пористость пластмассовой насадки р = 80—90% йг —константа скорости потребления кислорода при температуре [c.253]

    В уравнениях (7.7) и (7.8) — концентрация кокса т— время А — константа скорости реакции pQ — парциальное давление кислорода Ок. Ок— количество кокса в зерне катализатора в текущий и начальный моменты регейе-рации, соответственно а—коэффициент пропорциональности О — коэффициент ди(1х1)узии кислорода в пористом зерне. [c.364]

    Кровля угольного пласта может быть более или менее пористой, растрескавшейся или плотной. Через нее проникают кислород воздуха, грунтовые и атмосферные воды, переносящие кислород и другие агенты, которые окисляют уголь в естественных условиях. Зона, в границах которой устанавливается окисление углей, называется-зоной выветривания. Она может достичь довольно большой глубины (50—100 м). Окислители, вызывающие выветривание, проникают в угольный пласт по трещинам и другим проницаемым участкам. Выветривание углей в большинстве случаев происходит неравномерно. Поэтому угли с одной и той же глубины залегания имеют различную степень окисленности, а в отдельных участках вообще могут быть неокисленными [8, с. 166], Даже в малом куске угля, взятом из окисленной зоны, наблюдается различная окисленьость вокруг трещин и между ними (рис. 46). [c.164]

    По методам ASTM—IP бензин окисляют в аппаратуре, предназначенной для определения индукционного периода окисления автомобильных бензинов, при этом же режиме. Берут 100 мл образца бензина и помещают его во взвешенный стаканчик. Бомбу заполняют кислородом до давления 0,7 МПа и ставятвбаню с температурой 100 °С (для поддержания такой температуры при необходимости в воду добавляют этиленгликоль). В бане бомбу выдерживают в течение времени, заданного спецификацией на бензин (обычно 5 ч, но иногда предписывается выдерживать бомбу дольше). Затем бомбу вынимают и быстро охлаждают водой. Окисленный бензин фильтруют через взвешенный пористый стеклянный фильтр, стаканчик дважды промывают небольшими порциями растворителя (равнообъемная смесь толуола и ацетона) и промывную жидкость фильтруют, присоединяя к фильтрату. Фильтр с осадком высушивают в шкафу при 100—150 °С в течение 1 ч, охлаждают и взвешивают. По привесу фильтра рассчитывают количество осадка в мг/100 мл бензина. [c.87]

    Образование пористости облегчает доступ кислорода в массу битума, увеличивая поверхность окисления и интенси цируя проникновение атмосферных осадков в битум, способствуя дальнейшему расширению и увеличению его внутренней поверхности. Постепенно весь объем битума подвергается старению. Чем больше внутренняя поверхность битума, тем быстрее он старится. [c.64]

    Магнетит FegOi имеет шпинельную структуру, подобную MgAljOi и представляющую собой кубическую упаковку ионов кислорода, в промежутках между которыми распределены ионы Fe и Fe +. В невосстановленном катализаторе много крупных кристаллов, (рис. 39). Во время восстановления, весь кислород удаляется, но усадки не происходит, поэтому получается очень пористое железо, занимающее тот же общий объем, что и исходный магнетит (см. гл. 2, рис. 9). Эта пористость является важным фактором, влияющим на активность используемого катализатора. Другим важным фактором является дисперсность отдельных кристаллов железа, образованных при восстановлении, которая в основном определяется природой и количеством присутствующих промоторов. [c.159]

    В отсутствии влаги чистый металл химически стоек, не реагирует с кислородом, серой, галогенами, однако в высокодисперсном состоянии пирофорен. Техническое железо и его спла вы корродируют в атмосфере паров воды, оксида углерода (IV) и кислорода с образованием пористого слоя гидратированного оксида железа (II) ГеО пНаО. Не взаимодействует с щелочами. С углёродом при высоких температурах образует растворимый в металле карбид железа Feg (цементит) с содержанием угле-родаб,67% и температурой плавления 1550°С,атакже два типа твердых растворов. Железо так же образует многочисленные сплавы с другими металлами. [c.39]

    В последнее время получают распространение конвертеры с комбинированной продувкой, в которых через верхнюю фурму подается большая часть кислорода, а через донные фурмь или пористые огнеупорные элементы днища вдувается остальная часть кислорода или смесь его с инертным газом. В таких конвертерах сочетаются преимущества реакторов первого и второго типов. [c.84]


Смотреть страницы где упоминается термин Пористое кислорода: [c.486]    [c.493]    [c.495]    [c.500]    [c.46]    [c.17]    [c.122]    [c.147]    [c.297]    [c.37]    [c.76]    [c.387]    [c.171]    [c.92]    [c.80]    [c.160]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.2 , c.8 , c.276 , c.279 ]




ПОИСК







© 2025 chem21.info Реклама на сайте