Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плазменное напыление

Таблица 2.9. Технические характеристики установок для плазменного напыления Таблица 2.9. <a href="/info/21363">Технические характеристики</a> установок для плазменного напыления

    Установка для плазменного напыления включает плазмотрон механизм транспортирования порошковых или проволочных материалов пульт управления, в котором сосредоточены измерительные, регулировочные и блокировочные устройства источник питания дуги источник и приемник охлаждающей воды комплекс коммуникаций, соединяющий отдельные узлы установки и обеспечивающий подвод к плазмотрону газов, электроэнергии, охлаждающей воды. Система подвода к установке тока, плазмообразующего газа, охлаждающей воды взаимосвязаны. Электрическая схема включения напряжения, подводимого от источника тока к плазменной горелке, заблокирована контакта- [c.58]

    Применяя низкотемпературную плазму, можно наносить покрытия практически из всех материалов, которые в плазменной струе не сублимируют и не претерпевают интенсивного разложения. Нанесение износостойких, антифрикционных, коррозионно- и жаростойких покрытий плазменным напылением значительно расширяет круг применяемых материалов и улучшает качество покрытий, получаемых газотермическим напылением. Следует отметить, что некоторые тугоплавкие металлы и керамические материалы можно нанести только плазменным методом. Этот метод получает все большее развитие и применение в промышленности. [c.139]

    Восстановление изношенных валов насосов методом плазменного напыления имеет ряд преимуществ огромное тепловое воздействие на обрабатываемую поверхность вала и уменьшение деформации последнего минимальная глубина проплавления, что обеспечивает незначительное перемешивание основного металла с металлом покрытия и достижение физикомеханических свойств покрытия, близких к свойствам напыляемого порошкового материала возможность нанесения на изношенную поверхность порошков различных составов и получения покрытий с заданными физико-механическими свойствами экономия материальных средств в результате получения покрытия с минимальными припусками на последующ>то механическую обработку [11]. [c.57]

    К газотермическому напылению относят методы, при которых распыляемый материал нагревается до температуры плавления и образовавшийся двухфазный газопорошковый поток переносится на поверхность изделия. Это процессы плазменного напыления, электродуговой металлизации, газопламенного напыления (непрерывные методы) и детонационно-газовый метод нанесения покрытий (импульсный метод). Покрытия формируются из частиц размером в десятки микромиллиметров. Термическим методом покрытие можно наносить также в вакуумной технологической камере (термовакуумное напыление), при этом материал покрытия нагревают до состояния пара, и паровой поток конденсируется иа поверхности изделия. При использовании этих методов покрытие образуется из атомов или молекул вещества, а в некоторых случаях (электро.нно-лучевое плазменное, с помощью плазменных испарителей) — из ноиов испаряемого материала. Следует отметить, что чем выше степень ионизации потока вещества, тем выше качество покрытий. [c.138]


    Поверхностное легирование заключается в нанесении на защищаемую поверхность тонкого слоя металла из газообразной фазы вакуумным или плазменным напылением с последующей термообработкой. Так проводят аллитирование (А1), хромирование (Сг), силицирование (51) металлов. При этом для образования защитных пленок применяют металлы пассивные (Си, Ад, Ли) или стойкие к коррозии из-за образования на их поверхности плотной пленки оксида (А1, 2п, 5п, Сг, РЬ, N1). [c.197]

    За рубежом широкое применение получили универсальные установки плазменного напыления, обеспечивающие режим напыления с заданными параметрами. [c.61]

    Методами комбинационного рассеяния света и фотолюминесценции исследованы образцы графита с разупорядоченной кристаллической структурой. Исследован широкий набор образцов, полученных различными технологическими методами - облученный графит, углеродные пленки полученные разложением углеводородов и плазменным напылением, методом анодного травления впервые получен пористый графит и др. [c.144]

    Керамические покрытия — это покрытия из высокоплавких металлов, окислов и карбидов, полученные с использованием плазменного напыления. Наиболее распространенными керамическими покрытиями являются покрытия из окиси алюминия, двуокиси циркония, карбида вольфрама. Такие покрытия можно использовать для защиты деталей, подверженных воздействию расплавленных металлов и стекла, повышения жаростойкости деталей, изготовленных из углеродистых сталей, повышения износостойкости. Технология плазменного напыления позволяет получать керамические покрытия толщиной до 1,0 мм. [c.130]

    Характеристика различных установок для плазменного напыления дана в табл. 2.9. [c.61]

    В последние годы широко применяют металлизационный метод плазменного напыления, позволяющий наносить любые материаль , в том числе тугоплавкие металлы и окислы, создавая покрытия с заданными эксплуатационными свойствами износостойкие, коррозионно-стойкие, жаростойкие, электроизоляционные и др, [c.110]

    Такая система покрытий обеспечивает защиту стальной основы от водородного охрупчивания и коррозии и изнашивания гидро- или газоабразивным потоком. Двухслойное покрытие с наружным слоем, состоящим в основном из окиси алюминия, можно получать последовательным плазменным напылением с плавным переходом от А1 к А12 О3 или окислением части нанесенного алюминиевого покрытия. При этом окисление можно проводить твердым анодированием, анодным оксидированием, ионной имплантацией, окислением в тлеющем разряде и другими методами. [c.111]

    Универсальная установка А1612.У4 "Киев-4 для плазменного напыления состоит из источника питания, плазмотрона, газоприготовительной станции и порошкового дозатора дискового типа. Источник питания имеет три регулируемые ступени силы тока дуги (100, 200, 300 А). В установках использованы горелки ПГ-1Р и ПГ2Р, характеристики которых соответствуют вольт-амперным характеристикам источника питания вспомогательной и основной дуг. В качестве плазмообразующих газов применяют дешевые смеси метана (пропана, бутана) с воздухом, что повышает мощность установки и снижает стоимость процесса напыления. [c.59]

    Если данные металлы, например Ре, Мо, не могут дать соединений, удовлетворяющих этим требованиям, то необходимо наносить слои других металлов или соединений, используя плазменное напыление, вакуумное электронно-лучевое плазменное напыление и другие методы. Однако при этом также возникают проблемы адгезии слоя на металле, различных коэффициентов термического расширения и т. д. [c.530]

    При плазменном напылении применяют главным образом вольфрамовые электроды, марки которых приведены в табл. 2.10. Чистый вольфрам в качестве катода использовать нецелесообразно, так как он обладает сравнительно высоким значением работы выхода, и для получения требуемой электронной эмиссии его необходимо нафевать до высоких температур, что нередко служит причиной его разрушения. Для снижения работы выхода и повышения стойкости катода в последний добавляют активирующие присадки - оксид тория (Т11О2), оксид лантана (ЬаОз) и другие, которые понижают работу выхода до 2,7 -3,3 эВ. Вследствие этого облегчается ионизация атомов указанных присадок, уменьшается температура столба плазменной дуги в прикатодной области, что в конечном счете способствует улучшению зажигания и повышению стабильности горения сжатой дуги. [c.62]

    Плазменное напыление химически стойких материалов с последующей пропиткой [c.127]

    Плазменное напыление проводили порошком фракций 60 80 мкм, микро твердость получаемого покрытия была 1800 МПа, [c.111]

    Далее рассмотрены образцы покрытий, полученных плазменным напылением. [c.32]

    Основными преимуществами плазменного напыления (кроме возможности его применения для тугоплавких материалов) являются уменьшение пористости покрытия и увеличения сцепления (адгезии) с основным слоем при отсутствии значительного нагревания основного материала. Можно легко получить пористость в пределах 1—10%, а адгезию — порядка 30 МН/м . Плазменное напыление обходится дороже, чем газопламенное или электродуговое. [c.81]


    Плазменное напыление порошка покрывающего металла. Порошок плавится в луче плазмы, например ионизованного аргона, который образуется в электрической дуге пистолета. Плазменный луч имеет очень высокую температуру (около 15000 °С) и с высокой [c.80]

    Развитие технологии плазменного напыления, расширение потребностей практики вызывают необходимость разработки новых порошковых материалов для покрытий, среди которых наиболее важными иа современном этапе являются композиционные. [c.139]

    Плазменное напыление покрытий. ... [c.4]

    ПЛАЗМЕННОЕ НАПЫЛЕНИЕ ПОКРЫТИИ [c.139]

    Так, например, хром и никель в нержавеющих сталях, диффундируя к поверхности, образуют оксидный слой, содержащий шпинель Ni r204 и частично шпинель РеСггО . Оксидный слой такого состава оказывается более устойчивым, чем просто оксид СГ2О3, образующийся на поверхности чистого хрома. Поверхностное легирование представляет собой насыщение поверхности данного сплава металлом, обладающим прочным оксидным слоем, — аллитирование, хромирование, силицирование и т. д. Оно осуществляется диффузионным путем из газовой фазы, содержащей пары или летучие соединения легирующего компонента, или нанесением слоя этого металла вакуумным напылением, плазменным напылением или даже наплавкой, но обязательно с последующей термообработкой изделия. При нанесении на поверхность данного металла легирующего компонента возможно образование между ними интерметаллидов. [c.540]

    Метод плазменного напыления применяется для придания поверхности деталей, различных конструкций, машин и приборов таких свойств, как износостойкость, жаростойкость, коррозионная устойчивость, а также тепло- и электроизоляционных свойств. Разнообразие применяемых покрытий позволяет использовать нх в различных отраслях машиностроения, в авиации, ракетной технике, энергетике (в том числе атомной), металлургии, химической и нефтяной промышленности, электронике, радио- и приборостроении. Терморегулирующие плазменные покрытия применяют для космических летательных аппаратов. Большой практический интерес представляет использование покрытий для защиты от коррозии труб большого диаметра. [c.140]

    При плазменном напылении оксиды используют в виде порошка, что дает возможность получения сложных по составу и свойствам покрытий. [c.158]

    Для изготовления прямонакальных катодов методом плазменного напыления гексаборидов на молибденовую подложку была разработана технология получения бездефектных гранул из гексаборида лантана и проведены исследования твердофазного взаимодействия гексаборида с тугоплавкими металлами и соединениями с целью подбора переходного слоя. [c.81]

    Изделия из порошков Б. изготавливают спеканием предварительно спрессованных заготовок или горячим прессованием. Покрытия из Б. иа разл. подложках получают методом осаждения из газовой фазы при взаимод. галогенидов металлов и бора, плазменного напыления порошков и др. [c.304]

    Для плазменного напыления серийно выпускают установки двух типов УПУ и УМП. Плазменные установки типа УПУ (УПУ-ЗМ, УПУ-ЗД) предназначены для напыления покрытий из порошковых и проволочных материалов. Они укомплектованы источником питания ИПН-160/600 или ИПН-160-111. Последний поставляют в комплекте с установкой УПУ-ЗД. Селеновый выпрямитель в нем заменен кремниевым. Установка УПУ-ЗД снабжена двумя плазмотронами ПП-25 - для напыления порошком и ПМ-25 - для напыления проволокой. Установки типа УМП (УМП-5-68, УМП-6) предназначены для напыления только порошковых материалов. Установку УМП-5-68 поставляют без источника питания. Установка УМП-6 укомплектована тремя сварочными преобразователями ПД-502У2, ь ото-рые позволяют в широких пределах изменять напряжение, подводимое к плазмотрону, и обеспечивать требуемый режим его работы. Установки можно применять для напыления наружных и внутренних поверхностей цилиндрических деталей, а также поверхностей плоских деталей. [c.59]

    В Уральском научно-исследовательском трубном институте (УралНИТИ) разработан технологический процесс горизонтального эмалнроваЕШя труб, основанный на электростатическом и плазменном напылении порошкообразных эмалей. Как показали испытания, проведенные в УралНИТИ (табл. 14), эмалевые покрытия, полученные электростатическим и плазменным способами, по своим свойствам не уступают традиционным шликерным покрытиям. Они обладают большей сплошностью, лучшим сцеплением с металлом и другими более высокими показателями физико-механических и эксплуатационных свойств [c.98]

    Были гфоведены эксперименты по применению таких покрытий. Испытывали покрытия из кремния, смеси кремиия и кварца (в соотношении 1 1) и кварца, нанесенные ка металлические образцы методом плазменного напыления. [c.120]

    В покрытиях, полученных плазменным напылением, сцепление с подложкой осуществляется преимущественно за счет механического контакта высокотемпературных фаз (Сгз ., Ре512, Рез1) с углеродом. Проведение напыления в струе воздуха или азота, приводит к появлению нитрида Ре М в переходном слое. [c.32]

    Определения величин силы адгезии пека к различным металлам и масс СО, образующихся на поверхности металла разной степени обработки, показали, что прочность адгезионного сцепления пека с металлом и масса СО уменьшаются по мере увеличения чистоты обработки их поверхности. К тако10г же эффекту ведет покрытие металла неметаллическими материалами методом-плазменного напыления. В этом случае масса СО уменьшается в несколько раэ.  [c.98]

    Плазменное напыление схоже с процессом электродугового напыления тем, что для плавления и распыления подаваемого металла используется электрическая дуга постоянного тока. В данном случае дуга представляет собой ионизированную газовую плазму, образующуюся между электродами металла, охлаждаемыми водой. Электроды в этом процессе не расходуются. В плазменном металлизаторе точечный вольфрамовый катод, охлаждаемый водой, установлен концентрически у основания соплообразного охлаждаемого водой медного анода. Подаваемый газ под углом поступает сзади в кольцевой между-электродный зазор, ионизируется и образует дугу. Поток газа выталкивает дугу в отверстие сопла, где спиральный поток создает концентрацию тепла в центре плазменной дуги. Благодаря очень высокому температурному градиенту, образуемому при этом расположении дуги, температура в центре достигает 20000° С. Температура стенки сопла составляет 250° С. Металл для покрытия в виде порошка подается во втором потоке газа и радиально впрыскивается в сопло металлизатора. Частицы металла, проходя через плазменную дугу, плавятся, распыляются и выводятся из сопла под действием потока газа. [c.80]

    При плазменном напылении материал покрытия в виде порошка или проволоки вводят в плазменную струю, где он интенсивно нагревается, плавится, распыляется сформированный поток частрщ направляется на подложку, и при взаимодействии с поверхностью образуется покрытие. [c.139]

    Ионное осаждение в вакууме отличается от предыдущего метода тем, что пары осаждаемого металла или сплава ионизируются в плазме тлеющего разряда, в котором катодом слум<ит испаряемый материал, а анодом — подложка. Нагрев производят различными методами. Пары металла попадают в плазму при сравнительно высоком давлении (0,1—1,0 Па) инертного газа (Не, Аг, Кг). При этом происходит ионизация паров, ионы ускоряются электрическим полем, поток ионов осаждается на подложке. Этот метод — разновидность плазменного напыления. [c.140]

    Из-за высокой температуры плавления, высокой твердости и хрупкости окислов получение оксидных покрытий представляет известную трудность. Наиболее распространенный метод получения оксидных покрытий — плазменное напыление. Высокая температура плазменной струи (до 10000 К) позволяет получать покрытия из самых ннзкоплавких окислов, нитридов и карбидов. [c.158]

    Существенными недостатками защитных окисных покрытий, полученных плазменными напылением, являются их значительная (10— 20%) открытая пористость и недостаточно высокая прочность на отрыв (до 40 МПа). Этих недостатков во многом лищены оксидные покрытия, полученные методм детонационного напыления пористость таких покрытий составляет 0,5—1,5%, а прочность сцепления с основой может достигать 200 МПа (при отрыве). Сущность метода детонационного напыления состоит в использовании ударной [c.158]

    Некоторое повышение сопротивления коррозионно-усталостному разрушению образцов из среднеуглеродистой стали обеспечивают плазменные покрытия [229]. При плазменном напылении композиций Ni — А1 и Ni — Ti условный предел коррозионной выносливости образцов из стали 45 в растворе Na i увеличивается соответственно на 200 и 25 %. При этом ограниченная коррозионная выносливость возрастает в 12 и 1,5 раза. [c.191]

    Основа радиопрозрачной керамики -высокотемпературные оксиды Л1 и Ве, нитриды А1 и В tg5 10" , е4 (для нитрида бора) и 10 (для алюмооксидной керамики) теплопроводность (в Вт/м К) для А12 Оз 20, для ВеО 200, для ВЫ 400. Изделия из оксидной керамики получают методами шликерного литья, прессования, электрофоретич. и плазменного напыления с послед, высокотемпературным обжигом, из нитрида бора-путем хим. осаждения из газовой фазы с послед, мех. обработкой. Для повышения мех. прочности, термостойкости и уменьшения толщины стенок керамич. изделий в них при формировании вводят металлич. стержни, решетку или сетки. [c.171]


Смотреть страницы где упоминается термин Плазменное напыление: [c.424]    [c.78]    [c.78]    [c.523]    [c.490]    [c.92]    [c.50]    [c.65]    [c.542]   
Смотреть главы в:

Химия и технология термостойких неорганических покрытий -> Плазменное напыление


Возможности химии сегодня и завтра (1992) -- [ c.92 ]

Химия и технология лакокрасочных покрытий Изд 2 (1989) -- [ c.198 , c.265 ]

Химия и технология лакокрасочных покрытий (1981) -- [ c.258 ]




ПОИСК







© 2025 chem21.info Реклама на сайте