Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение водорода термическим разложением углеводородов

    Получение ацетилена методом термического разложения углеводородов изучалось в СССР и за рубежом. Этот метод основан на мгновенном действии высокой температуры (порядка 1500°) на углеводородную смесь с увеличением числа углеродных атомов в молекуле углеводорода степень нагрева может быть снижена. Существует несколько технологических схем термического разложения углеводородов, различающихся способами подвода тепла и сырья. Наиболее эффективным из них, по-видимому, является термический крекинг с присадкой кислорода, или, как его называют, термоокислительный пиролиз. При разложении углеводородов этим методом наряду с ацетиленом можно получать метанол, водород или азотоводородную смесь для синтеза аммиака. Эти продукты извлекаются из газов, отходящих из установок синтеза ацетилена. Одновременное получение столь ценных продуктов весьма положительно сказывается на экономике процесса. Особенно большой интерес представляет извлечение из отходящих газов аммиака. Из синтез-газа, образующегося при получении 1 т ацетилена, можно выделить около 4,2 т аммиака или 3,4 т метанола, а при ежегодной выработке 60—65 тыс. т ацетилена — 250 тыс. т аммиака. В производстве аммиака методом конверсии для выработки такого количества продукта надо израсходовать свыше 300 млн. м углеводородных газов. [c.18]


    Способ получения водорода термическим разложением углеводородов нашел ограниченное применение в практике. До последнего времени по этому способу работало лишь весьма небольшое количество установок. Это обстоятельство находится в связи с тем, что процесс термического разложения углеводородов проводился до сих пор в периодически действующих аппаратах водород получался загрязненным большим количеством примесей. [c.216]

    Получение водорода термическим разложением углеводородов 21T [c.217]

    Источники газообразных углеводородов — в первую очередь, природные и нефтяные попутные газы, а также некоторые синтетические газы, полученные при переработке горючих ископаемых (например, термическая и термокаталитическая переработка нефти и нефтепродуктов, термическое разложение — газификация — твердого и жидкого топлив, а также коксование твердого топлива — коксовый газ). В отличие от природных, синтетические газы наряду с алканами содержат также и ненасыщенные углеводороды, значительные количества водорода и др. Природные газы содержат в основном метан и менее 20 % в сумме этана, пропана и бутана, примеси легкокипящих жидких углеводородов — пентана, гексаиа и др. Кроме того, присутствуют малые количества оксида углерода (IV), азота, сероводорода и благородных газов. Многие горючие природные газы, залегающие на глубине не более 1,5 км, состоят почти из одного метана. С увеличением глубины отбора содержание гомологов метана обычно растет. Образование горючих природных газов — в основном результат катагенетического преобразования органических веществ осадочных горных пород. Залежи горючих газов формируются в природных ловушках на путях его миграции. Миграция происходит при статической или динамической нагрузке пород, выжимающих газ, а также свободной диффузии газа из областей высокого давления в зоны меньшего давления. Подземными природными резервуарами для 85 % общего числа газовых и газоконденсатных залежей являются песчаные, песча-но-алевритные и алевритные породы, нередко переслоенные глинами. В остальных 15 % случаев коллекторами газа служат карбонатные породы. Все газовые и газонефтяные месторождения приурочены к тому или иному газонефтеносному осадочному (осадочно-породному) бассейну, представляющему собой автономные области крупного и длительного погружения в современной структуре земной коры. Все больше открывается газовых месторождений в зоне шельфа и в мелководных бассейнах, например Северное море. Наиболее крупные газовые месторождения СССР—Уренгойское и Заполярное — приурочены к меловым отложениям Западно-Сибирского бассейна. [c.194]


    Для увеличения выхода сажи создан способ ее получения, основанный на термическом разложении углеводородов без доступа воздуха. Сырьем для производства термической сажи также служит природный газ, который разлагается на углерод и водород под воздействием высокой температуры при его соприкосновении с сильно нагретыми поверхностями. [c.41]

    ПОЛУЧЕНИЕ ВОДОРОДА ТЕРМИЧЕСКИМ РАЗЛОЖЕНИЕМ УГЛЕВОДОРОДОВ [c.216]

    Термическое разложение углеводородов связано с промежуточным образованием термически устойчивого углеводорода — метана. Поэтому скорость процесса термического разложения углеводородных газов с целью получения из них водорода лимитируется реакцией распада метана на элементы по реакции СН4— -С + Шг. Данные о равновесии этой реакции приводились в гл. I. Теоретически разложение метана на 98—99% должно происходить при 1000—1200° С. Однако при таких температурах скорость расщепления метана до элементов еще недостаточна, и для достижения приемлемых выходов водорода процесс приходится вести в интервале 1350—1400° С. Скорость термического разложения метана может быть увеличена при использовании катализаторов, содержащих железо, никель и другие металлы. [c.130]

    Теплотой сгорания (теплотворной способностью) горючих материалов называется количество теплоты в килоджоулях, которое выделяется при полном сгорании 1 м газа или 1 кг жидкого или твердого топлива. Теплота сгорания является одним из главных свойств горючих газовых смесей и зависит от их состава. Например, попутные нефтяные газы и газы крекинга, состоящие в основном из углеводородов, при сгорании выделяют значительно больше теплоты, чем газы, полученные при термическом разложении сланцев, в составе которых содержится значительное количество водорода и оксида углерода. Природный газ, состоящий в основном из метана, выделяет в среднем при сгорании 35,160 кДж/м . [c.11]

    Известей ряд способов получения водорода из жидких углеводородов, в том числе и из бензина термическое разложение, частичное окисление кислородом и конверсия с водяным паром. Термическое разложение бензина основано на реакции [c.367]

    Таким образом, реакцию термического разложения углеводородов в зависимости от температуры и продолжительности контактирования можно осуществить или до полного разложения с образованием в основном сажи и водорода или до менее глубокого разложения с получением промежуточных продуктов того или иного состава. [c.109]

    Конкретным сырьем для получения водорода из газообразных углеводородов при термическом разложении служат любые углеводородные газы, не содержащие кислородных соединений, или содержащие их в незначительном количестве, как природные и попутные газы, газы нефтепереработки и газы гидрирования. [c.44]

    Таким образом, можно прийти к выводу, что процесс термического разложения углеводородов, если он ведется только с целью производства водорода, должен быть гетерогенным. В то же время очевидно, что при получении в качестве целевого продукта сажи данный процесс должен протекать гомогенно. Необходимо отметить, что в этом противоречии заключается одна из причин того, что сооруженные до сих пор установки для термического разложения углеводородных газов с целью одновременного получения сажи и водорода себя не оправдали. [c.222]

    Между тем, в сыром техническом водороде, производимом методами газификации твердых и жидких топлив, а также конверсией углеводородных газов, содержится, как правило, некоторое остаточное количество окиси углерода. 1) Окись углерода имеется и в водороде, получаемом термическим разложением углеводородов, а также железо-паровым способом. Поэтому процесс удаления СО из газа является обычно составной частью технологической схемы получения водорода вышеуказанными способами. [c.379]

    От условий, в которых протекает та или иная стадия процесса, зависит возможность получения минимального химического недожога топлива и высоких теплотехнических показателей работы топки. Так, например, чем тоньше распыл мазута, тем быстрее происходит процесс его испарения и, следовательно, ускоряется завершение реакции горения. При недостаточном количестве воздуха в процессе термического разложения углеводородов, расщепление их может достигнуть конечных продуктов, что приводит к образованию свободного углерода (сажи), очень трудно поддающегося сжиганию. Для горения его требуется температура не менее 900° С. В связи с этим при сжигании мазута весь воздух следует подводить к корню факела с обеспечением тщательного перемешивания его с распыливаемым мазутом. При этом процесс расщепления углеводородов йе доходит до конечных продуктов разложения, а заканчивается образованием легких и тяжелых углеводородов. Легкие углеводороды и водород очень легко и быстро сгорают тяжелые высокомолекулярные углеводороды, так же как и сажистый углерод, сгорают трудно, требуя особых благоприятных температурных условий. В большинстве случаев они покидают топку не сгорая, и образуют копоть и сажу. [c.84]


    Выходящие из реактора газы имеют температуру 565—580 °С. Во избежание термического разложения углеводородов проводят быстрое охлаждение газов до 450 °С ( закалку ) путем впрыскивания воды на выходе их из контактного аппарата. Дальнейшее использование тепла реакционных газов существенно сказывается на повышении экономичности производства. Поэтому газы пропускают последовательно через перегреватель 3 и испаритель 2 для испарения и нагревания смеси, поступающей в реактор, и через котел-утилизатор 1 для получения водяного пара (его тоже применяют в процессе). Из котла-утилизатора газо-паровая смесь направляется в холодильник 5, охлаждаемый водой. Часть паров конденсируется, а несконденсировавшийся газ, содержащий пары этилбензола и стирола, охлаждается дополнительно в рассольном холодильнике 6, после чего водород с примешанными к нему низшими углеводородами, СО и СОг выводится в линию топливного газа. Конденсат из холодильников 5 я 6 поступает в сепаратор 7, [c.575]

    Теплота сгорания является одним из главных свойств горючих газовых смесей и зависит от их состава. Например, попутные нефтяные газы и газы крекинга, состоящие в основном из углеводородов, при сгорании выделяют значительно больше тепла, чем газы, полученные при термическом разложении сланцев, в составе которых содержится значительное количество водорода и оксида углерода. Природный газ, состоящий в основном из метана, выделяет в среднем при сгорании 35 160 кДж/м . [c.24]

    Различные процессы, служащие для производства угля и водорода из углеводородов, значительно отличаются друг от друга, так как условия зависят от характера требуемых продуктов. Уголь, первоначально образующийся при пиролизе углеводородов, превращается в аморфную серую модификацию, если его подвергать воздействию высокой температуры в течение слишком долгого времени Вследствие этого необходимо удалять уголь из сферы реакции, если желательными продуктами являются газовая сажа, ламповая сажа и тому подобные виды угля. Более того, при получении сажи лучше всего, повидимому, пользоваться сравнительно низкими температурами. Когда требуются более твердые и грубые формы угля, можно пользоваться высокими температурами и сравнительно длинными периодами нагревания, т. е. именно теми условиями, при которых получается наивысший выход водорода путем простого термического разложения. [c.229]

    Статьи содержат результаты экспериментальных исследО ваний института в области получения водорода, ацетилена, сажи и синтез-газа при неполном горении и термическом разложении углеводородов и в области получения формальдегида при прямом окислении метана, пропана и их смесей в воздухе и кислороде. Ряд статей посвящен вопросам разработки адсорбционных методов разделения углеводородов и очистки водорода от окисла углерода и металла. /  [c.2]

    Сравнение различных методов получения из нефти легких углеводородов, пригодных в качестве моторного топлива, навело его на мысль попробовать осуществить термическое разложение нефти в присутствии водорода под большим давлением. [c.14]

    Существующие способы получения пироуглерода основаны на высокотемпературном процессе термического разложения различных газообразных углеводородов при низком давлении, порядка нескольких мм рт. ст., илн в присутствии инертных газов или водорода. Процесс осуществляется, обычно, при температуре порядка 2100—2300° С. Получаемый материал обладает высокой плотностью, близкой к теоретической (примерно 2,1 — [c.59]

    Термическое разложение углеводородов. Возможность получения при термическом разложении углеводородов частиц, имеющих подобно СН, СНа и СНд лишь краткий срок существования, учитывалась еще в 1908 г. (Бон и Коцард), так как только подобным образом возможно логично объяснить природу получающихся продуктов. Вопрос этот в последние годы вновь изучался Ф. О. Райсом, который рассматривал прочность различных связей в углеводородах и предположил, что энергия активации, необходимая для разрыва какой-нибудь данной связи, равна энергии соединения. На основании этого Райс смог объяснить и качественно н количественно возникновение продуктов термического разложения предельных углеводородов. Вывод был сделан в предположении, что первой стадией разложения является отщепление метильного или этильного радикала или обоих, после чего они возбуждают цепную реакцию. Кроме того, постулировалось, что углеводородный остаток отдает после удаления простого радикала водородный атом, так что остается непредельный углеводород (олефин). Атом водорода также может начинать новую цепь реакций. Например, в случае пропана первые стадии процесса будут следующими  [c.271]

    Теплотой сгорания (теплотворной способностью) газа называется количество тепла в килокалориях, которое выделяется при полном сгорании 1 газа. Теплота сгорания является одним из главных свойств горючих газовых смесей и зависит от их состава. По данным, приведенным в табл. 6, легко заметить, что теплота сгорания углеводородов растет с увеличением их молекулярного веса и что при сгорании одного объема водорода или окиси углерода выделяется значительно меньше тепла, чем при сгорании углеводородных газов. Поэтому нопутные нефтяные газы й газы крекинга имеют более высокую калорийность в сравнении с газами, полученными при термическом разложении сланцев, в составе которых имеется большой процент водорода и окиси углерода. Природный газ, состоящий в основном из метана, выделяет в среднем при сгорании 8400 ккал1м (4,1868.103 дж/м ). [c.64]

    Burwell описал получение водорода и угля хорошего качества путем термического разложения углеводородов. В этом процессе струя естественного газа или испаренных углеводородов нефти, нагретых предварительно до температуры, [c.237]

    С промышленной точки зрения главный интерес этих реакций лежит в ВОЗМОЖНОСТИ получения водорода из газообразных углеводородов, и прежде всего из метана, путем взаимодействия их с водяным паром Этим методом из даннюто количества лтетана или другого газообразного углеводорода можно получить значительно больше водорода, чет при чисто термическом разложении (описанном в гл. 7). Tax путем термического разложения согласно уравнению СН4 — С + 2Нг, из одного объема метана можно получить не более двух объемов водорода реакция с водяным паром при высокой температуре позволяет получить 3 объема водорода из 1 объема метана. [c.304]

    Из числа приводимых ниже методов получения водорода большое техническое значение имеют получение водорода (или азото-водородной смеси) из водяного газа путем конеереииСО (контактный способ получения водяного газа), из природного газа или коксового газа в результате расщепления метана , из цоксового газа или водяного газа фракционным сжижением, далее — электролизом воды и железо-паровым способом. В качестве важнейшего побочного продукта водород получается в процессе электролиза водных растворов хлоридов щелочных металлов и при дуговом способе получения ацетилена. В ограниченном масштабе применяют также способ взаимодействия водяного пара с фосфором (способ Лильенротта) и термическое разложение углеводородов [c.44]

    В нашей стране наибольшие количества метана используются в качестве бытового газа. Применение метана для органического синтеза — одна из труднейших задач, так как метан наиболее пассивен из всех парафиновых углеводородов. Однако эта задача в настоящее время принципиально (а в ряде случаев н практически) разрешена. Метан может быть превращен путе.м термического крекинга или под действием тлеющих разрядов в зысокореакционноспособный углеводоро д — ацетилен. Можно каталитически окислить метан до муравьиного альдегида или муравьиной кислоты хлорированием метана могут быть получены хлористый метил, хлористый метилен, хлороформ, четырех-хлористый углерод, а нитрованием — нитрометан. Метан также используется для промышленного синтеза синильной кислоты. Важный путь использования метана — конверсия его в окись углерода и водород (исходная смесь для синтеза метанола, син-тина и синтола), протекающая при действии на метан паров воды при высокой температуре в присутствии катализаторов. Наконец, большие количества метана используются для получения сажи (термическое разложение метана на углерод и водород), В Советском Союзе этим путем ежегодно получают сотни тысяч тонн сажи, предназначенной в качестве наполнителя для синтетического каучука и для других целей. [c.32]

    Механические взвеси обычно содержатся в газе при условии его получения в пирогенетическом процессе. Технический водород, как правило, не содержит пыли, так как в ряде случаев он вырабатывается непирогенетическим путем (как, например, глубоким охлаждением газовых смесей или электролизом воды), а в других — при получении водорода через водяной газ — пыль удаляется в самом процессе производства водорода (до поступления водяного газа на конверсию СО). Загрязнен механическими взвесями (сажистым углеродом) водород, образующийся при термическом разложении углеводородов в гомогенном процессе. Наоборот, в сыром синтез-газе, вырабатываемом, как правило, в пирогенетических процессах преобразования твердых, жидких и газообразных топлив, механические взвеси являются сравнительно частым компонентом. [c.312]

    Бертло [1] получил некоторое количество ацетилена при помощи вольтовой дуги, пропущенной между двумя угольными электродами в атмосфере водорода. Дьюар [2] приписывал эту реакцию исключительно достигнутой здесь высокой температуре. Г авновесие углерода и водорода с ацетиленом изучалось рядом исследователей [3—7, 9— 11]. В равновесных смесях, исходящих как из ацетилена, так и из элементов, при температуре от 1000° до 1700° присутствуют весьма малые количества ацетилена выше 1700° содержание ацетилена возрастает с повышением температуры, вплоть до того момента, когда наступает изменение условий равновесия вследствие появления атомарного водорода. Фрост [12] сообщает, что значительные выходы ацетилена можно получить только в пределах 3100—3200°. Непрерывное образование ацетилена при таких высоких температурах зависит отчасти от стремления сложных углеродных структур расщепляться при этих условиях, предпочтительнее, на группы С , нежели на какие-либо другие части. Содержание ацетилена в момент получения его с помощью вольтовой дуги в атмосфере водорода достигает примерно семи-аосьми процентов. Вследствие того, что термическое разложение углеводородов дает газ с более высокой концентрацией ацетилена, синтез его из элементов для промышленных целей считается непригодным, хотя Брэдинг [13] и взял патент на дуговую аппаратуру, предназначаемую для этих целей. Сюда же относится метод крекинга углеводородов в вольтовой дуге в присутствии мелкораздробленного угля [22]. [c.29]

    На этом этапе производства ядерного горючего важнейшее соединение — тетрафторид урана, из которого могут быть получены гексафторид и двуокись урана или металлический уран. Тетрафторид урана можно получать двумя принципиально различными группами способов — водными (осаждением из растворов) и сухими (гидрофторированием твердых соединений газами при повышенных температурах). При газовом методе исходным соединением служит двуокись урана, а фторирующим реагентом — безводный фтористый водород, фториды аммония или фторсодержащие углеводороды. К сухим способам производства тетрафторида урана относятся также процессы получения его термическим разложением осадка аммонийуран-пентафторида, а также разнообразные реакции одновременного термического разложения, восстановления и гидрофторирования в атмосфере фторидов аммония. [c.154]

    Для изуче1Н1я взаимгюго влияния никеля, железа и кобальта на выход, состав, структуру и свойства продуктов процесса термокаталнтического разложения газообразных углеводородов были проведены эксперименты на двухкомпонентных катализаторах на основе металлов подгруппы железа, полученных путем термического раз южения соответствующих оксидов с последующим восстановлением водородом при температуре 500°С и взятых в различных соотнощениях по массе из расчета, что сумма масс чистых металлов в смеси равна 0,25 г. [c.44]

    Реакции дегидрогенизации олефинов, так же как деполимеризации, приводят к образованию олефинов, диолефинов и водорода. Парафины при этих реакциях не образуются. Однако парафиновые углеводороды, особенно низкомолекулярные парафины, включая метан и этан, легко получаются при других реакциях разложения олефинов. Исследования дальнейших стадий термического разложения олефинов при высоких температурах не могут быть включены в эту книгу из-за слишком большого количества их. Табл. 15 содержит результаты, полученные Уилером и Вудом [140] для термического разложения пропилена, и дает представление о продуктах дальнейшего разложения олефинов. Очень похожие данные были получены этими же авторами для этилена и бутилена. [c.49]

    Одной из наиболее существенных особенностей термического разложения углей является перераспределение водорода между продуктами этого разложения. Это существенно отличает деструкцию угольного вещества от термического распада алифатических углеводородов и большинства полимеров, которые при пиролизе преимущественно переходят в газовую фазу. При термическом распаде угольного вещества происходит конденсация циклов с образованием продуктов, обогащенных углеродом. Таким образом, конденсированный обуглерожеиный продукт образуется при взаимодействии свободных макрорадикалов и ненасыщенных молекул, полученных преимущественно из дегидрированной или обедненной водородом части остаточной массы угля. [c.141]

    Аналогичные побочные процессы протекают и при пиролизе других алюминийтриалкилов. Эти реакции наблюдаются при температурах 200—300° С. Лариков с сотрудниками изучали термическое разло/кение триэтил- и триизобутилалюминия в жидкой фазе при постоянном объеме и постоянном давлении [27]. Было подтверждено, что основное направление реакции термического разложения алюминийалкилов в интервале 50—180° С — это диссоциация на диалкилалюминийгидрид и олефин. При температурах в пределах 180—300° С триизобутилалюминий разлагается на водород, алюминий и изобутилен, а продуктами разложения триэтилалюминия являются сложные смеси алюминийалкилов и углеводородов. Температура начала термического разложения триэтил- и триизобутилалюминия в замкнутом объеме отмечается соответственно при 150 и 50° С. По полученным экспериментальным данным рассчитаны теплоты реакций диссоциации и определены константы равновесия. [c.12]

    Термическое разложение тетраэтилсвинца. Тетраэтилсвинец применяемый для получения свободных радикалов в парах, не принадлежит к обычным реагентам, служащим для получения этих радикалов в растворе, так как он не разлагается пои температурах ниже 200° С. Но, применяя бомбы из нержавеющей стали, Крамер сумел изучить реакции свободного этила с жидкими углеводородами при температурах в 200—270° С. Он нашел, что в жидкой и паровой фазах идут совершенно одинаковые реакции. Этильные радикалы превращаются в этан путем гидрирования и в этилен при диспронорцнонировании. Но затем значительная часть этилена превращается в результате цепной полимеризации в высококипящее углеводородное масло. Парафиновые углеводороды, в том числе циклопарафины и олефиновые углеводороды, повидимому, довольно легко дегидрируются этильными радикалами. Ароматические углеводороды, например бензол и нафталин не реагируют с этильными радикалами ниже 300° С 3. Вторичные и третичные группы С — Н отдают атомы водорода легче, чем СНэ-группы. Даже олефиновые [c.152]


Смотреть страницы где упоминается термин Получение водорода термическим разложением углеводородов: [c.233]    [c.74]    [c.584]    [c.53]    [c.91]    [c.99]   
Смотреть главы в:

Основы производства водорода -> Получение водорода термическим разложением углеводородов




ПОИСК





Смотрите так же термины и статьи:

Водород получение



© 2024 chem21.info Реклама на сайте