Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конденсаторы первичной

Рис.7.5. Схема синтеза углеводородов в жидкой фазе 1-компрессор 2-теплообменник 3-реактор 4-конденсатор 5-продуктовые емкости 6-разделительные емкости 7-насосы 8-фильтр 9-центрифуга 10-установка для выделения СОг 11-аппарат для приготовления суспензии катализатора 12-емкость для масла 1-очищенный газ 11-вода Ш-водяной пар IV-вода V-низкокипящие первичные продукты VI-высококипящие первичные продукты УП-жидкая фаза и оотработанный катализатор УШ- отработанный катализатор IX-свежий катализатор Х-остаточный газ XI- O2 Рис.7.5. <a href="/info/25483">Схема синтеза</a> углеводородов в <a href="/info/30223">жидкой фазе</a> 1-компрессор 2-теплообменник 3-реактор 4-конденсатор 5-продуктовые емкости 6-разделительные емкости 7-насосы 8-фильтр 9-центрифуга 10-установка для выделения СОг 11-аппарат для <a href="/info/1710313">приготовления суспензии катализатора</a> 12-емкость для масла 1-очищенный газ 11-вода Ш-водяной пар IV-вода V-низкокипящие <a href="/info/315639">первичные продукты</a> VI-высококипящие <a href="/info/315639">первичные продукты</a> УП-<a href="/info/30223">жидкая фаза</a> и оотработанный катализатор УШ- отработанный катализатор IX-свежий катализатор Х-остаточный газ XI- O2

    В абсорбционных холодильных машинах рабочим телом служит раствор, состоящий из двух (или более) компонентов с разными температурами кипения при одинаковом давлении. Низкокипящий компонент (холодильный агент) испаряется в испарителе, отнимая теплоту от охлаждаемого тела. Пар холодильного агента поглощается вы-сококипящим компонентом (поглотителем) в абсорбере, откуда раствор перекачивается насосом в кипятильник, где при нагревании за счет внешнего источника теплоты холодильный агент испаряется, а оставшийся раствор возвращается в абсорбер. Испаренный холодильный агент конденсируется при охлаждении водой в конденсаторе и возвращается в испаритель. В промышленных условиях для абсорбционной установки могут быть применены первичные энергетические ресурсы (ПЭР) высокотемпературные пар и газы, электрическая и солнечная энергия, а также вторичные энергетические ресурсы или сокращенно ВЭР (см. разд. 3.1) — бросовая теплота пара, горячей воды, реакторных газов, циркулирующих жидкостей и т. д. [c.50]

    Общая полезная разность температур и ее распределение по корпусам. Общая разность температур А общ многокорпусной прямоточной установки представляет собой разность между температурой Т1 первичного пара, греющего первый корпус, и температурой насыщения пара в конденсаторе Г онд  [c.359]

    ХОЛОДИЛЬНИКИ-КОНДЕНСАТОРЫ Первичные (водяные) конденсаторы [c.190]

    На установку поступает газ прямой перегонки, который через сепаратор С-1 подается на сжатие компрессором ЦК-1. Сжатый и нагретый газ охлаждается и конденсируется в водяном - ХК-1 - и аммиачном - ХК-2 - конденсаторах-холодильниках. После каждой ступени конденсации газожидкостная смесь разделяется ка газ и жидкость в сепараторах С-2 и С-3. Газовые конденсаты из С-1, С-2 и С-3 смешиваются с головками стабилизации установок первичной перегонки и каталитического риформинга и подаются на блок ректификации. [c.7]

    Соленая вода (морская), пройдя теплообменники 2 к 3, поступает в испаритель 7, где охлаждается кипящим пропаном. Температура в испарителе равна 1,7° С, давление составляет 490 кПа. Образовавшиеся кристаллогидраты пропана после промывки в аппарате 8 поступают в конденсатор 9 первичного холодильного цикла, где разделяются на воду и жидкий пропан при давлении 589 кПа и температуре 7,3° С. Необходимое тепло отводится при конденсации паров пропана, поступающих из I ступени компрессора 6, и паров, образующихся при дросселировании жидкого пропана после пере-охладителя 4. [c.12]


    Прямогонный газ через сепаратор С-1 подается на сжатие компрессором ЦК-1. При сжатии газ нагревается до 120°С. Сжатый газ затем конденсируется в водяном конденсаторе-холодильнике ХК-1 и в конденсаторе-холодильнике ХК-2, охлаждаемом испаряющимся аммиаком. В ХК-1 охлаждение и конденсация заканчивается при 50 °С, а в ХК-2 — при 4 °С. После каждой ступени конденсации газожидкостная смесь разделяется на газ и жидкость в сепараторах С-2 и С-3. Газовые конденсаты из сепараторов С-1, С-2 и С-3 совместно с головками стабилизации установок первичной перегонки 11 риформинга подаются на блок ректификации./ [c.291]

    Фазу поджига регулируют с помощью реостата в цепи первичной обмотки трансформатора. Уменьшая зарядный ток конденсатора в активизаторе, увеличивают фазу поджига. Продолжительность фактического горения разряда при этом уменьшается. Разряд становится более жестким. Регулировать фазу изменением зазора в разряднике не рекомендуется. При большом напряжении пробоя разрядника выходит из строя конденсатор колебательного контура. [c.70]

    Подлежащая очистке парафиновая масса поступает в аппарат первичной подготовки плавитель 1, где происходит ее нагрев до 90-95°С, расплавление и частичный отстой воды. Далее расплавленная масса самотеком поступает в смеситель 2, куда подается расчетное количество растворителя-бензина. Образовавшаяся смесь насосом 3 направляется в отстойник 4, куда для улучшения расслоения подается вода. После отделения водного раствора солей и механических примесей бензиновый раствор очищенной парафиновой массы откачивается в емкость 5. Бензиновый раствор парафина насосом подается в трубчатую печь 6 для нагрева до 150- 200°С, после чего поступает в отгонную колонну 7. Легкие погоны с верха колонны через конденсатор-холодильник 8 поступают в емкость-отстойник 9 для сбора продуктов и удаления воды. Товарный озокерит-сырец отводится с низа колонны. Такой озокерит по качеству не уступает природным озокеритам. [c.163]

    Экологические проблемы защиты водного и воздушного бассейнов промышленных регионов от отрицательного влияния производственных выбросов в настоящее время являются общегосударственной задачей. В нефтеперерабатывающей промышленности основными блоками, имеющими наибольшие выбросы как в атмосферу, гак и в стоки, являются вакуумсоздающие системы атмосферно-вакуумных трубчаток (АВТ) и вакуумных трубчаток (ВТ). Совершенствование вакуумных блоков установок первичной переработки нефти имеет своей целью дальнейшее углубление вакуума при перегонке тяжелых остатков и сокращение как стоков, так и выбросов в атмосферу. Решению этой проблемы способствует разработка новых схем фракционирования тяжелых остатков, способов создания вакуума, а также совершенствование и модернизация оборудования существующих вакуумных блоков - вакуумных печей (частей), трансферных трубопроводов, вакуумных колонн и контактных устройств, предварительных и межступенчатых конденсаторов, самих вакуумсоздающих систем. Полное решение проблемы зак- [c.11]

    Применение вакуума дает возможность использовать в качестве греющего агента, кроме первичного пара, вторичный пар самой выпарной установки, что снижает расход первичного греющего пара (см. ниже). Вместе с тем при применении вакуума удорожается выпарная установка, поскольку требуются дополнительные затраты на устройства для создания вакуума (конденсаторы, ловушки, вакуум-насосы), атакже увеличиваются эксплуатационные расходы. [c.348]

    Исходный раствор подается насосом в последний по ходу греющего пара (третий) корпус, из которого упаренный раствор перекачивается во второй корпус, и т. д., причем нз первого корпуса удаляется окончательно упаренный раствор. Свежий (первичный) пар поступает в первый корпус, а вторичный пар из этого корпуса направляется для обогрева второго корпуса, затем вторичный пар нз предыдущего корпуса используется для обогрева последующего. Из последнего корпуса вторичный пар удаляется в конденсатор. [c.356]

    Общий перепад давлений Ар в установке, равный разности между давлением первичного пара, греющего первый корпус, и давлением пара в конденсаторе, распределяют предварительно поровну между корпусами тогда при п корпусах на каждый корпус приходится перепад давлений Ар ор Ар/л. [c.380]

    Т. е. пропорциональна логарифму отношения напряжений на первичных накопительных конденсаторах. Здесь — коэффи-циент усиления усилителя. Подставляя сюда выражение для ан и 1 йср из формулы (3.24), получим  [c.82]

    Коррозионностойкие металлы наиболее полно используются для изготовления конденсационно-холодильного оборудования. Подвергающиеся интенсивной коррозии трубные пучки из углеродистых сталей и нестабилизированной латуни почти повсеместно заменены трубками из латуней, стабилизированных мышьяком ЛОМТ-70-1-0,06 или ЛАМШ-77-2-0,0б. На многих установках первичной переработки нефти углеродистые трубы на линиях после конденсаторов бензина, наиболее часто подвергающиеся сквозной коррозии, заменены нержавеющими. В тех случаях, когда выявляется недопустимо сильный коррозионный износ отдельных аппаратов или узлов, привлекают научно-исследовательские организации (ВНИИНефтемаш, ВНИИНефтехим и др.), которые выявляют причины коррозии и дают обоснованные предложения по замене материала или другим способам зашиты. [c.73]


    В соотношении (11.184) верхний предел интегрирования 2 характеризует собой момент времени отбора концентрата примеси. Фактор разделения колонны при этом будет составлять Fo t2). После мгновенного удаления концентрата примеси и заполнения емкости для концентрирования в конденсаторе колонны новой порцией конденсата фактор разделения колонны уменьшится до значения / о(Л). Это значение будет равно тому значению фактора, которое достигалось бы в колонне, если бы колонна с самого начала процесса проработала в нестационарном состоянии и безотборном режиме время i . Следовательно, если принять, что восстановление значения фактора разделения после отбора концентрата примеси до первоначального значения Fo(I2) происходит в соответствии с ходом кинетической кривой первичного выхода колонны к стационарному состоянию, то нижиий предел интегрирования t в (11.184) будет равен Fo[t ) на расчетной кинетической кривой Po t. Причем, исхо- [c.98]

    Более стабильным является разряд в генераторе с двумя искровыми промежутками для питания конденсированной искры (рис. 83). Ток напряжением 220 в через реостат 1 попадает в первичную обмотку трансформатора 2, повышающего напряжение с 220 до 1200—1500 в сила тока контролируется амперметром 3. Искра образуется в аналитическом промежутке 4, который подключен через катушку самоиндукции 5 к конденсатору 6. Последовательно с аналитическим промежутком 4 вводится дополнительный промежуток (разрядник) 7. Аналитический промежуток 4 шунтируется большим сопротивлением 8. Во время зарядки конденсатора 6 от сети сопротивление 8 проводит ток, и на электродах аналитического промежутка 4 не образуется разности потенциалов. Разрядка конденсатора 6 начинается пробоем промежутка 7. Для постоянства условий пробоя электроды этого промежутка делаются из вольфрама. [c.231]

    Конденсаторная (импульсная) сварка. Точечная сварка может осуществляться импульсом тока, получаемым во вторичном контуре сварочного трансформатора прн разряде конденсаторов через его первичную обмотку. [c.317]

    Число разрядов в течение половины периода напряжения сети зависит от тока заряда конденсатора и напряжения пробоя меж-электродного промежутка. Уменьшая расстояние между электродами или увеличивая ток в цепи первичной обмотки трансформатора, можно увеличить число пробоев (рис. 48). [c.74]

    Электрическая схема автоматики обеспечивает включение генератора УГЭ-4 на заранее установленное время предварительного обжига и экспозиции, выбор и последовательное включение каналов, контроль положения выходных щелей, калибровку установки по эталонным образцам. Она обеспечивает также последовательное включение напряжений на первичных накопительных конденсаторах, полученных при зарядке их фототоком или контрольным напряжением. [c.692]

    Теплообменники с плавающей головкой (рис. 21) — основной вид теплообмепного аппарата современного НПЗ, На установках первичной перегонки нефти они используются для подогрева нефти за счет теплоты отходящих продуктов, в качестве водяных конденсаторов-холодильников, подогревателей сырья стабилизации и т, д. Наличие подвижной решетки позволяет трубному пучку свободно перемещаться внутри корпуса, пучок легко удаляется для чистки и замены. Для улучшения условий теплопередачи аппараты изготавливаются многоходовыми (имеют 2, 4, 6 ходов по трубкам). [c.137]

    Рис, 4.2. Характер изменения температур первичной П и вторичной В сред вдоль поверхности нагрева конденсатора. [c.105]

    На установке впервые применены укрупненные теплообменники, кожухотрубчатые конденсаторы и холодильники вместо погружных все колонны, кроме вакуумной, оборудованы тарелками с З-образными элементами, что полностью себя оправдало. Вакуумная колонна оборудована желобчатыми тарелками. Впервые также большое число технологического оборудования было размещено на открытых площадках (вне помещения) под навесом. Опыт эксплуатации описанной установки подтвердил возможность работы по схеме однократного испарения и в дальнейшем был перенесен на вновь проектируемые мощные комбинированные установки первичной перегонки АТ и АВТ. Размещение технологического оборудования под открытым небом под навесом также получило широкое распространение. Оказалось, что такое решение является весьма целесообразным как по технико-экономическим, так и по санитарно-гигиеническим соображениям. Кроме того, в проекте предусмотрены особые мероприятия для ведения монтажных и ремонтных работ в климатически холодных районах наличие специальных передвижных агрегатов для подогрева воздуха на рабочем [c.102]

    В ХТС крупнотоннажного производства карбамида первичный техиологи-ческий отказ промывной колонны, проявляющийся в нарушении заданного режима орошения жидким аммиаком, приводит к неполному поглощению диоксида углерода в верхней части промывной колонны. Непоглощеиный диоксид углерода, взаимодействуя с жидким аммиаком в буферной емкости и далее в танке аммиака, образует карбонаты аммония. Эти соли в виде твердых частиц забивают теплообменные трубки в конденсаторах аммиака, вызывая вторичный технологический отказ конденсаторов. Кроме того, образовавшиеся карбонаты приводят к абразивному износу и даже к заклиниванию плунжера аммиачного насоса высокого давления, вызывая тем самым возникновение вторичного механического отказа насоса. [c.27]

    Лншшз задействованного на установках первичной переработки нефти теплотехнического оборудования показывает, что оно имеет широкий спектр конструкций, а именно кожухотрубчатые теплообменники (с и-образными трубка.ми и плавающей головкой), конденсаторы и холодильники гюгружного типа (змеевиковые и секционные), конденсаторы воздушного охлаждения, нагревательные печи и многое другое оборудование. [c.77]

    I — теплообменник 2, 3 — колонны аммонолиза 4 — перегреватель 5 — реактор 6 — отпарная колонна 7 — абсорбер 8 — емкость для ннтрилов-сырца 9, 12 — ректификационные колонны I0 — автоклав II — фильтр 13 — емкость для первичных аминов 14 — конденсаторы-холодильники  [c.300]

    Схема отделения синтеза аммиака имеет два технологических цикла (см. рис. 12) цикл синтеза, состоящий из колонны синтеза I, первичного конденсатора II, линии продувки III, вторичного конденсатора V со вводом свежего газа VI, и рецикл танковых газов, состоящий из танка VII и конденсатора танковых газов VIII. [c.76]

    При переработке сернистых и высокосернистых нефтей наиболее интенсивная коррозия наблюдается на установках первичной перегонки нефти (АТ и АВТ). При этом основными коррозионными агентами являются сероводород, хлористый водород и низкомолекулярные летучие кислоты. При термической обработке нефти эти компоненты образуются, соответственно, из термически нестабильных сернистых соединений, хлоридов щелочноземельных металлов, хлороргани-ческих соединений ц нафтеновых кислот. Наиболее интенсивная коррозия оборудования наблюдается в низкотемпературных зонах (при температурах ниже точки росы). В зоне конденсации влаги (верхняя часть атмосферных и вакуумных колонн, зона ввода острого орошения и конденсаторы-холодильники) за счет растворения хлористого водорода, сероводорода и низкомолекулярных летучих кислот образуются кис- [c.14]

    I — теплообменник 2 — кристаллизатор 3, 7 — компрессоры соответственно первичный № вторичный 4 —сепаратор 5, —емкости с рапой (температуры соответствеино +6, +12,i и —3,33°С) i — коиденсатор-оттанватель S — конденсатор морская вода (температура 10 °С) II, III, W//— опресненнаа вода (температуры соответствеино 6 12,2 и 0°С) IV — рапа на дебутанизацию V, VI — жидкие бутаны (температуры соответственно 12 78 и 1,7 °С) V//— смесь льда и рапы. [c.367]

    При расчете заданы обычно следующие величины расход исходного раствора 0 , его начальная и конечная Ь концентрации, температура 1 , с которой раствор поступает на выпаривание, температура первичного пара, греющего первый корпус, температура вторичного пара Гконд в конденсаторе после последнего корпуса. Кроме того, в случае отбора экстра-пара задаются количества отбираемого из корпусов экстра-пара Е2 и т. д. [c.377]

    Управляющий электрод тиристора 8 подключен через конденсатор 10 к выходу мультивибратора, собранного на транаисторах II, 12. Первичная низковольтная обмотка бобины 9 соединена с запальной свечой 13.Контакты 1 подключены в цепь базы транзистора б через со-, противление 15.Питание мультивибратора и триггера осуществляется стабилизированным источником питания, собранным на транзисторе 16 и стабилитроне 17. [c.43]

    Дистиллированный амин собирают в приемнике 23, откуда он подается в аппарат 25, снабженный мешалкой и холодильником-конденсатором. В аппарате 25 первичный амин подвергают воздействию смеси муравьиной кислоты и раствора формальдегида, в результате образуется алкилдиметиламин. После подщелачивания отделившийся слой третичного амина сушится над безводным кар-бонато.м натрия в аппарате 29 и поступает на дистилляцию в перегонный куб 30. [c.111]

    С — конденсатор — катушка индуктивности — аналитический разрядный промежуток /2 — вспомогательный разрядный промежуток Я — реостат первичной обмотки трансформатора Тр — трансформатор г — балластное сопрогивленме [c.14]

    Поджиг осуи1ествляют с помощью активизатора, собранного по схеме, предложенной Н. С. Свентицким (рис. 42). Повышающий трансформатор небольшой мощности 2 питается от сети переменного тока через реостат. В цепь вторичной обмотки включен конденсатор 3, который заряжается по мере повышения напряжения сети в начале каждого полупериода. Зарядка конденсатора продолжается до тех пор, пока напряжение на нем не достигнет напряжения пробоя вспомогательного разрядного промежутка 4. После пробоя промежутка высоким напряжением конденсатор разряжается через цепь, состоящую из разрядника и катушки 5. В этом контуре возникают затухающие высокочастотные колебания, которые через повышающий трансформатор 6 подаются на электроды 8 и ионизируют дуговой промежуток. Первичной обмоткой трансформатора служит катушка колебательного контура, а вторичная обмотка 7 включается в цепь дуги. Конденсатор 9 замыкает цепь вторичной обмотки трансформатора и препятствует попаданию высокочастотных колебаний в сеть. Сопротивление конденсатора R  [c.68]

    Схема параметрического источника тока в однофазном варианте показана на рис. 4.24. ТрехфЗЗНЫЙ вариант получается из трех однофазных, сдвинутых относительно друг друга на 120° С. Такой источник представляет собой звезду, включенную в трехфазную питающую сеть один из лучей звезды представляет собой первичную обмотку питающего нагрузку трансформатора Тр. Нагрузка может подключаться к трансформатору либо непосредственно, либо через выпрямитель, если требуется питание ее на постоянном токе. В последнем случае для выпрямления используется мостовая схема, питаемая от трехфазного трансформатора (три однофазных источника тока), следовательно, одновременно осуществляется преобразование однофазного потребителя в трехфазный с равномерной нагрузкой фаз. Два остальных луча звезды выполнены в виде емкости Хс и индуктивности Хь, причем Хс—Хц для того, чтобы обеспечить резонанс схемы. В этом случае ток в вертикальном плече звезды, а следовательно, и ток нагрузки не зависят от ее сопротивления 2 и всегда постоянны (в пределах 3%). Объясняется это тем, что положение точки О (нуля напряжений звезды) перемещается в пространстве, точка О совпадает с точкой А при коротком замыкании (напряжение на нагрузке равно нулю) и уходит вниз от точки О при значительном уменьшении тока. Таким образом, короткое замыкание не является опасным для источника тока наоборот, обрыв дуги вызывает резкое повышение напряжения на трансформаторе и особенно на конденсаторах. Поэтому установки с параметрическим источником тока должны иметь быстродействующую защиту от повышения напряжения на случай обрыва дуги, а включение па- [c.236]


Смотреть страницы где упоминается термин Конденсаторы первичной: [c.191]    [c.218]    [c.14]    [c.310]    [c.17]    [c.365]    [c.234]    [c.137]    [c.21]    [c.51]    [c.81]    [c.81]    [c.14]    [c.230]   
Коррозия и защита химической аппаратуры ( справочное руководство том 9 ) (1974) -- [ c.70 , c.78 , c.107 , c.109 , c.113 , c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Конденсаторы-холодильники при первичной переработке нефти

Первичные (водяные) конденсаторы



© 2024 chem21.info Реклама на сайте