Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

слоев третичная

    Первичная структура белка, т. е. последовательность аминокислотных остатков в полипептидных цепях, уже обсуждалась в разд. 14.3. Термин вторичная структура используют для обозначения тех простейших способов, при помощи которых полипептидные цепи скручиваются или складываются в молекулах белков. Наиболее важные вторичные структуры —а-спираль и два вида структуры, которую называют структурой типа складчатого слоя. (Третичная структура включает вторичные структуры и те фрагменты полипептидной цепи, которые соединяют один участок вторичной структурой с другим четвертичная струк- [c.428]


    Существуют самые различные формы нефтяных месторождений, но во всех них нефть двигалась вверх по наклонным пластам до тех пор, пока не натолкнулась ка непроницаемый участок. Такие участки могут образоваться также в результате сбросов. Германские нефтяные месторождения большей частью связаны с выходами соли—так называемыми штоками каменной соли. Образование нефти не связано с определенной геологической эпохой. Подобно солевым и угольным месторождениям, нефтяные месторождения встречаются почти во всех формациях, однако более половины месторождений находится в слоях третичного периода. Нефтяные месторождения расположены большей частью на внешнем крае складчатых гор, потому что здесь были наиболее благоприятные условия образования мелких морей. [c.125]

    Кольцевые слои волокна (кольца роста), внешний слой внешняя вторичная стенка. Внутренний слой третичная стенка. [c.249]

    В закрытом куполе соляная масса залегает на более или менее значительной глубине под земной поверхностью сверху она бывает прикрыта слоем ангидрита ийи гипса, а эти последние в свою очередь перекрываются пористым известняком, или доломитом. Эту верхнюю покрышку соляной массы американцы называют шапкой . Над соляной залежью наблюдается переслаивание куполовидно изогнутых пластов глин и песков. Края, а иногда верхняя часть соли принимают грибообразную форму, где шапка нависает над стволом и примыкающими к нему осадочными породами, образуя ряд навеса. Пласты, прилегающие к массе соли с боков, по мере приближения к краям купола обнаруживают иногда столь значительный подъем кверху, что по окружности купола они оказываются почти вертикальными или даже запрокинутыми. В куполах, расположенных ближе к берегу залива, соляные массы окружены с боков осадочными породами третичного возраста и перекрываются еще более молодыми осадками постплиоценового возраста. В строении куполов, более удаленных от берега, нанример, находящихся в Северной Луи- [c.237]

    Диатомеи — микроскопические растения, широко распространенные и географически, и геологически. Они известны во всем мезозое и в третичных отложения х, но неизвестны в слоях палеозойского возраста. Эта неопределенность может объясняться не их отсутствием, а изменением органических остатков в столь древних породах. Диатомеи являются организмами, живущими в пресной и преимущественно морской воде. Они содержат кремнистое вещество в виде коробочек, или капсул с крышечкой, содержащих протоплазму, которая очень богата жирами и вос-ками. После погребения эти вещества под влиянием несколько повышенной температуры и высокого давления претерпевают такие же изменения и превращения, как и жиры животного происхождения, о чем мы имеем представление из знаменитых опытов К. Энглера так что и со стороны химии эта гипотеза как будто не встречает возражений. Но К. Крэг все же полагает, что .. .  [c.325]


    Диатомит состоит из индивидуальных кремнеземных панцирей микроскопических третичных (миоценовых) водорослей диатомей, отложившихся в морских или пресных водах. Под микроскопом частицы диатомита обнаруживают большое разнообразие форм (рнс. Х-2), что способствует образованию слоя вспомогательного вещества с высокой пористостью. [c.345]

    Воздух в топку подается в двух или в трех ее участках первичный воздух — в сжигательное устройство для распыления жидкого топлива или получения газовоздушной горючей смеси вторичный воздух — в камеру горения для окисления распыленного жидкого топлива или для создания внутреннего воздушного охлаждения пристенного слоя футеровки и частичного снижения температуры дымовых газов третичный воздух (рециркуляционный теплоноситель) — в камеру смешения для снижения температуры потока продуктов горения до заданного уровня и одновременного выравнивания в объеме. В некоторых конструкциях топок с мазутным топливом в форсунку подается весь воздух. В этом случае воздух, поступающий в камеру смешения, принято называть вторичным. [c.73]

    I ов. В этом оформлении реакция является типичным гетерогенно-каталитическим процессом, а ее небольшой тепловой эффект позволяет использовать адиабатические реакторы со сплошным слоем стационарного катализатора. Мольное отношение аммиака и спирта (метиловый или этиловый) составляет 4 1, причем первичные, вторичные и третичные амины можно получать в любом соотношении, возвращая на реакцию ту или иную часть каждого амина (чаще всего триметиламин). Осуществляется и рециркуляция избыточного аммиака, непревращенного спирта и простого эфира. [c.280]

    На действующих заводах исходным сырьем являются метанол и изобутан. Метанол подвергается окислительной конверсии в формальдегид на типовых установках с катализатором—серебро на пемзе (см. гл. 6), входящих в состав основного производства. Полученный формальдегид после отгонки непрореагировавшего метанола направляется на синтез ДМД. Изобутан дегидрируется в псевдоожиженном слое пылевидного катализатора (см. дегидрирование бутана и изопентана). С4-фракция дегидрирования изобутана, содержащая до 45—50% изобутилена, также подается на синтез. Существенно отметить, что для получения ДМД могут использоваться любые технические С4-фракции, содержащие достаточное количество изобутилена (продукты каталитического крекинга, пиролиза, дегидратации изобутиловых спиртов и т. д.). Обычно сопутствующие изобутилену непредельные углеводороды С4 нормального строения, так же как пропилен и олефины С5, значительно уступают изобутилену, обладающему активным третичным атомом углерода, по реакционной способности во взаимодействии с формальдегидом (табл. 11.3). [c.368]

    Каждый промежуток времени жизни земли, который имеет специфический комплекс слоев, называется геологической системой или периодом. Системы делятся на эпохи, а несколько систем объединяются в геологические эры. Образование угля протекало неравномерно в различные эры и периоды. По данным Степанова и Миронова (рис. 2), основные запасы угля сосредоточены в третичном периоде (54,44%). Уголь, отнесенный к юрскому периоду составляет только 4% мировых запасов угля, в пермском периоде отложено 16,97о, а в каменноугольном — 23,74% Количество девонских и еще более старых углей исчисляется только тысячными долями процента [20, с. 74]. [c.10]

    После запаивания трубку помещают в трубчатую печь и нагревают при 115—130° С б ч. Затем нагревание прекращают, трубку охлаждают и вскрывают ее для выпуска образовавшихся газов. После этого трубку снова запаивают и нагревают при той же температуре еще 6 ч. После охлаждения трубку вскрывают, содержимое ее переносят в делительную воронку, отделяют кислотный слой и основную часть продуктов реакции промывают несколько раз водой, а затем кипятят со спиртовым раствором алкоголята натрия до полного растворения. К раствору добавляют 10%-ную водную щелочь и извлекают из него при помощи диэтилового эфира не растворимые в щелочном растворе третичные нитросоединения. Не вступившие-в реакцию углеводороды извлекают горячим бензином, а для выделения вторичных нитросоединений щелочной раствор насыщают сначала углекислотой, а затем уже их извлекают диэтиловым эфиром. Выделенные из смеси продукты реакции подвергают химическому анализу. [c.57]

    Хотя автору и не известно, применяется ли такой способ в промьпиленности, но двуокись титана является хорошим катализатором указанного процесса, если допустимо пропускать смесь спирта и кислоты над стационарным слоем катализатора при температурах-280-3 20°С. Конверсия за проход составляет 70%,. Этот метод можно применять для получения эфиров муравьиной кислоты, даже если в отсутствие спирта кислота будет разлагаться. Его также можно использовать для получения эфиров ароматических кислот, например бензойной /45/. Этот процесс идет хорошо с первичными спиртами, удовлетворительно со вторичными и совсем не идет с третичными спиртами. [c.328]

    При разложении смешанного алкоголята магния водой с выделением спирта образуется нерастворимая в воде осно ная соль магния. Это затрудняет отделение эфирного раствора спирта и последуюш,ую экстракцию эфиром водного слоя. Для перевода основной соли в растворимую среднюю обычно при разложении пользуются разбавленными растворами (5—10%) серной или соляной кислот. В случае третичных спиртов необходимо учитывать легкость замеш,ения гидроксильной группы на галоген при взаимодействии их с галогеноводородными кислотами, а также легкую дегидратацию под действием серной кислоты. Поэтому при синтезе третичных спиртов разложение реакционного комплекса рекомендуется проводить насыщенным раствором хлористого аммония. [c.216]


    Ленты р-кератина, по-видимому, не сливаются во вторичные спирали, а располагаются в пучке слоями или образуют различные клубки Все эти более сложные комплексы а-спиралей или цепочек р-типа представляют третичную структуру белка. [c.177]

    Гипотеза происхождения нефти из наземных растений наиболее полно и обстоятельно развита К. Крэгом. Остроумно и резко критикуя гипотезу животного происхождения и всякого рода дпстилляционные гипотезы, он утверждает, что .. . единственным источником происхождения нефти, представляющимся в одно и то же время достаточным по объему, и допустимым с точки зрения как физической, так и химической возможности, является наземная растительность Сущность этой гипотезы сформулирована им следующим образом Нефть образуется из остатков наземной растительности, скопляющихся в глинах или песках, или самостоятельных залежах.. . путем таких естественных процессов, которые не только можно воспроизвести в лаборатории, но относительно которых может быть доказацо, что они происходили в прошлом и совершаются и но сие время. В других условиях эти остатки могут дать угли, лигниты, или углистые сланцы . Следовательно, К. Крэг считает, что исходный материал для образования углей и нефти один и тот же, и условия и формы его накопления одни и те же. Дельты больших рек, застойные водоемы, мелководные лагуны, покрытые болотными или мангровыми лесами, — вот те места, где происходило накопление, последующее погребение растительного материала и превращение его в уголь или нефть, смотря по наличию тех или иных условий, сопровождавших самый процесс изменения. Поэтому К. Крэг говорит о двух фазах одного и того же процесса — угольной и нефтяной — и отмечает, что .. . путем детального картирования стратиграфии доказано, что одни и те же горизонты, являющиеся углистыми в одной местности, становятся нефтеносными в другой. В некоторых случаях нефтеносная фаза сменяется угольной на протяжении всего 300 ярдов (в Бирме, на о. Тринидад) в тех же самых горизонтах . Разница состоит лишь в том, что везде, где появляется нефтеносная фаза, непосредственно над нефтеносными песками или несколько выше их залегают более или менее значительные толщи непроницаемых глин. Непроницаемость этих слоев, не позволявшая образующемуся газу уходить из залежп, и давление, которое производили вышележащие толщи вместе с давлением газа, и создали те условия, при которых растительный материал превратился в нефть. В этом отношении, по словам К. Крэга, весьма поучителен один из береговых разрезов на о. Тринидад, где обнажены горизонтально залегающие слои третичных отложений, содержащие прослои лигнита со стволами деревьев в вертикальном положении, корни которых находятся в подстилающей глине. Стволы представляют [c.320]

    Дистиллированный амин собирают в приемнике 23, откуда он подается в аппарат 25, снабженный мешалкой и холодильником-конденсатором. В аппарате 25 первичный амин подвергают воздействию смеси муравьиной кислоты и раствора формальдегида, в результате образуется алкилдиметиламин. После подщелачивания отделившийся слой третичного амина сушится над безводным кар-бонато.м натрия в аппарате 29 и поступает на дистилляцию в перегонный куб 30. [c.111]

    Третичные г а л о и д б у т и л ы. -Все галоидопроизводные третичного бутилового спирта легко получаются при смешении галоидо-в-одородной кислоты (в виде концентрированного водного раствора) со- сп-и-ртом на холоду выделяющийся в течение нескольких минут галоидбутил находится в верхнем слое. Третичные галоидопроизводные получаются также прямым взаимодействием и-зобути-лена с безводной галоидоводородной -к-и-слотой Третичный х юристы-й бутил представляет с-о-бою бесцветную жидкость, -кипящую при 51,5° третичные бромистый и и-одисты-й -бутил кипят -соответственно- при 72° и 103°. С промышленной точки зрения пока представляет интерес только хлористый бутил. -Важным применением это-го продукта следует считать введение при пО МОщи его- третичной бутильной -группы в органические -соединения, особенно- в ароматические углеводороды, реакцией Фриделя-Крафтса. [c.433]

    ЛИ, которую играют в поддержании структуры те или иные связи, различают несколько структурных уровней. Первичная структура белка определяется числом и последовательностью ковалентно связанных аминокислот. Полипептидная цепь благодаря водородным связям, образующимся между кислородными атомами карбонильных групп и азотными атомами амидных групп, приобретает вторичную структуру она может образовать спиральную конфигурацию (а-спираль) или конфигурацию так называемого складчатого слоя. Третичной структурой называют определенное пространственное расположение пептидной цепи, обусловленное взаимодействием между различными ее боковыми группами. В поддержании третичной структуры участвуют другие водородные связи, ионные связи и неполярные (гидрофобные) взаимодействия. Поперечные связи, соединяюище различные участки полипептидной цепи, могут быть и ковалентными таковы, например, дисульфидные связи, образующиеся при окислении SH-rpynn. И наконец, благодаря взаимодействиям нескольких полипептидных цепей могут возникать надмолекулярные агрегаты. Такое строение (при котором белок состоит из определенного числа полипептидных цепей, или субъединиц) называют четвертичной структурой. При физиологических условиях белок находится в водной фазе. Поэтому между белками и диполями воды тоже имеет место взаимодействие. Полярные группы гидратированы. Факторы, вызывающие изменение заряда белков (концентрации ионов Н, Са , Mg , К и др.), неизбежно влияют также на степень гидратации, а тем самым и на степень набухания белков. [c.43]

    Ход определения. К 1 мл испытуемого спирта добавляют при 26—27° С 6 мл реактива Люкаса (136 г безводного хлорида цинка в 105 мл концентрированной соляной кислоты). Реакционную массу тщательно перемешивают. Третичные спирты реагируют сразу, образуя нерастворимый слой третичного хлорида [c.29]

    Обе реакции происходят одновременно. Нейтрализация свободной фосфорной кислоты железом на.рушает равновесное состояние фосфатов в растворе у стальной поверхности, и в результате этого на ней образуется прочный слой третичных фосфатов. Фосфатный слой имеет высокую пористость. Его поры действуют как масляные карманы . [c.126]

    Исследованием разных слоев угля установлено, что при сорбции масла жасмина на угле наблюдается хроматографическое распределение его по слою, причем такие компоненты, как н асмнн, индол, бензил-бензоат, бензойная кислота и первичные спирты в основном сорбируются в нижнем слое третичные спирты (линалоол) в большом количестве сорбируются в верхних слоях. [c.165]

    Как известно, основной структурной и функциональной единицей растения является клетка. Она состоит из стенки, протопласта и вакуоли. Отличительный признак растительной клетки — целлюлозная стенка. Она хорошо оформлена, очень прочна и сохраняется после отмирания протопласта. Из рис. 1 видно, что клеточная стенка включает тонкий внутренний выстилающий слой (третичную стенку), содержащую целлюлозу и гемицеллюлозу, широкую вторичную стенку, состоящую из целлюлозы, лигнина и гемицеллюлоз, и первичную стенку. Первичные стенки соседних клеток (волокон) соединены между собой когезивным межклеточным веществом, или срединной пластинкой. Имеются [c.6]

    Цепь начинается [уравнение (33)] с окислительной атаки серной кислоты по третичному водороду, что ведет к выделению двуокиси серы (при разложении иона бисульфата), которое сопровождает изомеризацию углеводородов при помощи этого катализатора [8]. Изомеризация [уравнение (34)] включает перемещение метильной группы вдоль углеродной цепи, что осуществляется весьма легко. Некоторые исследователи [75] считают возможным образование на этой стадии промежуточного циклического иона. При этом может наблюдаться также некоторое увеличение разветвленности в результате образования диметилпентанов, но в гораздо меньшей степени. Цепь развивается за счет перехода третичного атома водорода от молекулы углеводорода к одному из ионов карбония (35). На этой стадии образуется другой ион карбония, который также чувствителен к реакциям изомеризации и развития цепи. Обрыв цепи, по-видимому, сопряжен с реакцией полимеризации носителя цепи с обра-аованием сильно непредельных органических комплексов, которые накапливаются в кислотном слое [33]. [c.38]

    Затем эти олефины реагируют с третично-бутил-карбоний-ионами, образуя изонентаны и изопонаны. Углеводороды выше пентанов вступают также в комплексную полимеризацию (перенос водорода), образуя изопентан и высоконепредельные олефины, которые при анализе продуктов реакции обнаруживаются в кислотном слое [546, 560.  [c.132]

    В реакторах с псевдоожиженным слоем пылевидного катализатора, аналогичных хорошо известным блокам дегидрирования бутана и изопентана. Сгфракция дегидрирования изобутана, содержащая до 45—50% изобутилена, также подается на синтез. В принципе для получения ДМД могут использоваться любые технические С4-фракции, содержащие достаточное количество изобутилена (продукты каталитического крекинга, пиролиза, дегидратации изо-бутиловых спиртов и т. п.). Обычно сопутствующие изобутилену непредельные углеводороды С4 нормального строения, так же как пропилен и нормальные олефины С5, значительно уступают изобу-обладающему активным третичным атомом углерода, по реакционной способности во взаимодействии с формальдегидом (рис. 1, таблица).  [c.697]

    Очень часто на присутствие нефти вокруг вулканических ядер указывают большие выходы ее на поверхность. Например, такие выходы нефти послужили причиной разведки и последующего открытия ряда богатых нефтяных месторождений в Мексике. Некоторые из мексиканских выходов нефти встречаются вдоль дайковых базальтовых пород в третичных отложениях. В тех случаях, когда пористые, или кавернозные, известняки или рыхлые песчаники, соприкасающиеся с изверженными ядрами, не выходящими на дневную поверхность, бывают перекрыты непроницаемыми глинистыми породами, выходов нефти на дневную поверхность может и не существовать. В данном случае поводом к разведке может служить наличие куполовидной структуры в слоях, выходящих на дневную поверхность. Случаи таких закрытых куполов в Мексике наблюдались, но они сравнительно редки, в большинстве же случаев изверженные породы достигают дневной поверхности и вокруг них образуются высачивания нефти. [c.256]

    На первом месте здесь должны быть поставлены месторождения, расположенные нап ове Челекен, на горе Небит-Даг и др. Здесь антиклинальные структуры развиты настолько густой сетью сбросов, что представляет большие затруднения восстановить их первоначальный облик. На распределение нефти в этих месторождениях сбросы имели большое влияние. Сбросы и взбросы бывают очень различной амплитуды, достигая, нанример, на юго-западном погружении челекенской антиклинали 500—600 м и даже более. Здесь слои бакинского возраста (верхи третичной систелш) [c.290]

    Так произошла нефть почти всех нефтяных месторождений Соединенных Штатов, так произошла нефть и наших нефтяных месторождений Грозненского, Майкопского, Эмбенского районов и др., где нефть, как говорят, залегает первично, т. е. она возникла в пределах той свиты, где сейчас залегает, и вся ее миграция совершалась в пределах только этой сьитьт из глин в пески и по пескам — в своды антиклиналей и в другие места скопления. Но там, где она залегает вторично, не в тех свитах, среди которых возникла и куда пришла после сложного пути странствования, там процессы ее образования несколько неясны. Возьмем нефтяные месторождения юго-восточной части Кавказа, где залежи нефти приурочены к продуктивной толще. Эта свита по своему характеру и по условиям отложения не могла сама по себе быть источником нефти, а могла послужить лишь великолепным коллекторол для нее . Нефть в нее пришла из других свит, но из каких именно Вот тут-то и начинается область догадок. Все свиты третичного возраста типа диатомовых слоев, майкопской свиты, бурого коуна могли быть материнскими породами. Битуминозные породы залегают и в мезозое. Кроме того, мы здесь видим тесную связь не только территориальную, но и генетическую, между грязевыми вулканами и нефтяными месторождениями. [c.347]

    Надсолевые отложения представлены терригенными образованиями и относятся к данково-лебедянским слоям девона, каменно-угольным и пермским системам палеозоя, к мезозою и третичным отложениям. [c.490]

    В третьем приближении учитывается влияние и следующего слоя связей, т. е. взаимного влияния связей, расположенных через три атома углерода. Так как каждый из этих атомов может быть первичным, вторичным или третичным, требуется ввести еще 18 ин-крементор. (Каждому из щести вариантов сочетания двух атомов отвечают по три варианта состояния третьего атома.) Вместе с 9 инкрементами, описанными выше, это потребовало бы системы из 27 инкрементов. [c.243]

    Степень метаморфизма бурых и каменных углей является фиксированным выражением дальнейших эволюционных превращений, которыми была охвачена вся область торфяной залежи в целом. Такие превращения зависят от мощности осадочных- слоев, испытываемого давления, температуры и времени торфоуглеобразователь-ного процесса. Но только геологический возраст ископаемых углей не определяет степень их метаморфизма. Именно поэтому некоторые отложения углей в карбоне остались на стадии лигнита , тогда как известно, что некоторые антрациты относятся к третичному периоду .  [c.19]

    Считается, что главные реакции алкилирования протекают на поверхности раздела кислота/углеводород или вблизи нее [7, 15, 16], однако вероятнее всего они идут в слое кислоты, приграничном к поверхности раздела. Этот вывод основан на том, что в сравнении с изобутаном остальные изопарафины (включая легкую фракцию, триметилпентаны, диметилгексаны и тяжелую фракцию) проявляют значительно меньшую активность в отношении переноса гидрид-иона правда, хотя многие из этих изопарафинов и содержат один или более третичных атомов углерода, они растворяются в кислотной фазе еще меньше, чем изобутан. [c.130]

    При действии избытка 100%-ной серной кислоты при комнатной температуре нормальные первичные спирты превращаются в алкипсерные кислоты, не образуя диалкил сульфатов [8], но после длительного стояния от кислоты отслаивается сложная смесь углеводородов, относящихся главным образом к парафиновому ряду. При этерификации первичных изоспиртов с разветвленными цепями, включая изобутиловый,. изоамиловый и оптически активный амиловый спирты, кроме сложных эфиров, получаются соединения, обесцвечивающие бромную воду. Наибольшее количество этих соединений отмечено при этерификации изо-бутилового спирта. При действии серной кислоты вторичные и третичные спирты сначала превращаются главным образом в сложные эфиры, которые при стоянии в присутствии избытка серной кислоты образуют углеводороды. Маслянистый слой, медленно отслаивающийся от серной кислоты, содержит большой процент насыщенных углеводородов [9]. Водород, необходимый для их образования, освобождается путем диспропор-ционирования типа сопряженной полимеризации [10], в результате которого получаются циклоолефины, остающиеся в кислом растворе. Из цетилового спирта получается вещество с т. пл. 50°, обладающее свойствами парафинового воска. Цикло-гексанол превращается в высококинящие углеводороды [11]. Кислый сульфат, приготовленный из трифенилкарбинола [8], представляет собой сильно диссоциированную кислоту, судя по его низкому молекулярному весу в растворе сернох кислоты. Он разлагается водой, регенерируя трифенилкарбинол. [c.8]

    На эти реакции несколько похожа реакция присоединения спиртов к третичным олефинам, в результате которой получаются эфиры третичных алкилов. Процесс проводят при 60° и под давлением в присутствии серной кислоты как катализатора. Как и в случае непосредственного получения сложных эфиров из олефинов, образуется равновесная сМесь, которая разделяется на два слоя в верхнем, углеводородном, слое находится эфир. Эфиры третичных алкилов легко гидролизуются минеральными кислотами, в щелочной же и нейтральной среде они устойчивы. От эфиров первичных или вторичных алкилов их отличает очень слабая способность образовывать перекиси. Простейший член этого ряда — метил-трет-бутиловый эфир СНзОС(СНз)з — кипит при 55°. Получен целый ряд таких эфиров, и этот метод распространен тоже на синтез mpem-бутилфенилового эфира ( Hajg O eHs (т. кип. 185—186°), который в мягких условиях перегруппировывается под действием хлористого алюминия в -трет-бутилфенол [28]. [c.201]


Смотреть страницы где упоминается термин слоев третичная: [c.41]    [c.194]    [c.93]    [c.52]    [c.126]    [c.338]    [c.506]    [c.109]    [c.717]    [c.80]    [c.58]    [c.124]    [c.55]    [c.96]    [c.489]   
Гены и геномы Т 2 (1998) -- [ c.34 , c.59 , c.66 ]




ПОИСК







© 2025 chem21.info Реклама на сайте