Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкая фаза изменение состава

    Аналогично протекают процессы испарения и конденсации е системах гомогенных азеотропов, образующих постоянно кипящие смеси с максимумом точки кипения. Здесь также, если состав перегоняемого раствора равен уе (фиг. 27), то выкипание системы будет происходить при постоянной температуре и неизменном составе жидкой и паровой фаз во все время испарения начального раствора, пока не выкипит его последняя капля. Также н при охлаждении насыщенного пара состава уе процесс конденсации будет протекать при неизменной температуре и постоянном составе образующейся жидкой и остаточной паровой фаз, пока не перейдет в жидкость последний пузырек пара. Если же начальный состав системы отступает в ту или другую сторону от азеотропического, то перегонка и конденсация протекают с изменением температуры и состава жидкой и паровой фаз. Так, если состав а меньше Уе, то процесс перегонки сопровождается повышением температуры и обогащением остаточной жидкой фазы компонентом ау, который на интервале концентраций 0<а<уе играет роль высококипящего. Если же состав а начальной системы больше азеотропического состава Уе, то в ходе перегонки, сопровождающейся постепенным повышением температуры, состав остатка прогрессивно обогащается компонентом а, который на интервале концентраций уе <я<Г1 играет роль высококипящего. [c.66]


    Влияние давления. Давление в термодеструктивных процессах следует рассматривать как параметр, оказывающий значит( льное влияние на скорость газофазных реакций, на фракционный и г]руппо-вой углеводородный состав как газовой, так и жидкой фаз реакционной смеси, тем самым и дисперсионной среда. Последнее обстоятельство обусловливает, в свою очередь, соответствующее изменение скоростей образования и расходования, а также молекулярную структуру асфальтенов, карбенов и карбоидов. [c.64]

    Причиной изменения концентраций начальной фазы раствора в ходе ее выкипания или конденсации является выделение из нее новой фазы, имеющей состав, отличный от ее состава. Это обстоятельство и наряду с ним резкое различие в плотностях паровой и жидкой фаз, обеспечивающее возможность их легкого самопроизвольного отделения друг от друга, создают основу промышленного применения процессов перегонки. [c.63]

    Изменение концентрации НКК в пределах от Х2 до 1 приведет к изменению температуры системы от до Система будет иметь одну жидкую фазу, а состав паров будет изменяться от Уе до 1. [c.79]

    Множители при йР и йТ имеют определенный физический смысл. Так, множитель при йР выражает в расчете на один моль изменение объема смеси при смешении в условиях постоянства температуры и давления небольшого количества паровой фазы с таким большим количеством жидкой фазы, что состав последней не изменяется. Множитель при йТ после умножения на Т дает скрытую теплоту парообразования раствора. [c.12]

    Во втором случае (рис. 73, в) при дальнейшем изменении давления видоизменение синтектического типа диаграммы состояния завершается переходом в диаграмму монотектического типа с дистектической точкой. При определенном давлении (Р ) имеет место новый тип диаграммы состояния, который в данном случае содержит промежуточную точку аналогичную выше рассмотренным точкам У и У и являющуюся предельной для синтектической, дистектической и монотектической точек. Однако горизонталь этой диаграммы, заканчивающаяся в точке не является синтектической или монотектической, так как кристаллизующаяся при этой температуре жидкая фаза имеет состав, одинаковый с составом химического соединения. Если ордината сплава пересекает эту горизонталь, то, хотя образованию конгруэнтно плавящегося соединения и предшествует процесс расслоения, одна из образующихся жидких фаз не принимает [c.230]

    Во втором случае (точка с1) на отрезке линии иопарения В11 из раствора кристаллизуется соль В и состав раствора изменяется по линии еЕь На участке вода испаряется из жидкой фазы, имеющей состав точки перехода Еь При этом происходит одновременное растворение соли Вк и кристаллизация соли В, обеспечивающие неизменность состава равновесной жидкой фазы (Е]). После растворения всей имеющейся в твердой фазе соли Вк дальнейшая кристаллизация соли В из раствора Е[ приводит к изменению его состава. При этом последовательность процессов, протекающих на участке испарения аналогична ранее рассмотренной при испарении воды из раствора Е1 на участке Е1С. Полученные сухие остатки и с различаются между собой соотношением солей В и С. [c.35]


    При рассмотрении режимов медленной или быстрой реакции безоговорочно предполагается, что состав жидкой фазы, кроме концентрации абсорбирующегося компонента, однороден. Для этой концентрации характерен диапазон изменения от значения на поверхности раздела фаз Сц до значения в объеме жидкой фазы Со. При этих допущениях можно дать определение равновесного значения Со в том смысле, что с — величина, обеспечивающая равно- [c.58]

    Опубликованные в литературе результаты экспериментов (раздел 11.4) показывают, что при комнатной температуре процесс абсорбции СОг буферным раствором протекает в режиме медленной реакции. Следовательно, уравнения, выведенные в разделе 7.1, принципиально применимы для проектирования насадочных колонн. Эти уравнения, правда, не учитывают возможность постепенного изменения величины k по длине колонны вследствие того, что состав жидкой фазы изменяется от высокого значения Рс в сечении на входе до более низкого —на выходе. Изменение А по длине колонны определяется уравнением (11.6), а величина Рс в любом сечении колонны определяется из уравнения материального баланса. Действительно, концентрация карбоната уменьшается а бикарбоната увеличивается за счет количества двуокиси углерода, абсорбированной на пути от сечения подачи жидкости до рассматриваемого сечения.  [c.133]

    На фиг. 20 приведены равновесные изобарные кривые кипения и конденсации для однородного в жидкой фазе азеотропа с минимумом точки кипения, представленные в системе координат температура—состав . Состав ус, общий для пара и жидкости в азеотропической точке, разделяет равновесную диаграмму на две части, напоминающие обычные изобары веществ, характеризующихся монотонным изменением летучих свойств. Как указывалось ранее, состав азеотропической точки не является постоянным и меняется с изменением давления и поэтому напрашивается мысль о таком изменении внешнего давления, при котором состав, отвечающий экстремальному значению температуры, передвинулся бы в область концентраций, отвечающих практически приемлемой чистоте одного из компонентов системы. Тем самым, совершенно недопустимое для процесса ректификации касание кривых равновесия пара и жидкости передвигается к конечной точке интервала концентраций, оставляя простор для ведения процесса практически во всем интервале существования системы. [c.137]

    Тем не менее, уравнение (2.3) не может быть строгим, так как оно не предусматривает явления химического насьш1ения, которое рано или поздно должно наступить. Насыщение происходит потому, что при продолжении процесса абсорбции, химический состав жидкой фазы и, следовательно, величина г изменяются со временем. Конечно изменение величины г по мере протекания процесса абсорбции зависит от отдельных рассмотренных процессов. В описании явления такого типа может оказаться полезной концепция квазистационарности. Она предполагает, что в любой [c.32]

    Точка 5. Состав смеси, обозначенный точкой 5, соответствует составу соединения АВ. Вначале процесс охлаждения идет аналогично процессу 4 до точки О. Здесь начинается образование и выпадение соединения АВ, обеднение жидкой фазы компонентом В и переход его в раствор. По мере того, как выпадает соединение АВ, количество жидкой фазы уменьшается, причем уменьшается также и количество твердой фазы компонента В. В тот момент, когда исчезнут последние капли жидкости, весь компонент В будет израсходован, система будет состоять только из чистого твердого соединения АВ. Поэтому дальнейшее охлаждение ниже точки О пойдет по закону Ньютона без всяких термических изменений. [c.233]

    Влияние давления. Давление в термодеструктивных процессах следует рассматривать как параметр, оказывающий значительное влияние на скорость газофазных реакций, на фракционный и групповой углеводородный состав как газовой, так и жидкой фаз реакционной смеси, тем самым и дисперсионной среды. Последнее обстоятельство обусловливает, в свою очередь, соответствующее изменение скоростей образования и расходования, а также моле — кулярной структуры асфальтенов, карбенов и карбоидов. Анализ большого количества экспериментальных данных свидетельствует, что II процессе термолиза нефтяных остатков с повышением давле — ния  [c.43]

    Блок-схема алгоритма расчета стационарного распределения концентраций приведена на рис. 6.3. Сначала вводятся исходные данные число компонентов К, число тарелок. N, количество вводов питания NNF, число отборов фракций по паровой и жидкой фазам соответственно NNV и NNL, количество дистиллята D, флегмовое число R, точность расчета состава EPS, номера тарелок ввода питания NF, номера тарелок отбора фракций но пару и жидкости NV и NL, количества питаний F, отбора фракций по пару WV и жидкости WL, состав питаний XF, коэффициенты аппроксимации давления пара чистых компонентов А1, А2, АЗ, А4. Без каких-либо изменений в программе возможен расчет ко- [c.386]


    Переработка сырого мирабилита в безводный сульфат натрия в значительной степени зависит от характера и количества примесей, вносимых с остаточной и жидкой фазой, а состав последней меняется в течение года и по мере эксплуатации месторождения [80, 81, 83]. Изменение состава межкристальных рассолов можно охарактеризовать отношением концентраций Na l/lVlg lj. В 50-х годах значение этого коэффициента составляло —2,9, т. е. рассолы [c.178]

    В процессе разработки газоконденсатных месторождений при падении пластового давления ниже давления начала конденсации происходит выпадение жидкой фазы, и состав добываемой смеси существенно меняется. Следовательно, становятся другими и оптимальные условия промысловой сепарации. При проектировании разработки и эксплуатации месторождений динамику технологических показателей с учетом изменения состава и свойств добываемого сырья можно прогнозировать на основе математического моделирования соответстзующих процессов с учетом фазовых превращений пластовой и добываемой смесей. [c.174]

    Как указывалось выше, обычными средствами нельзя разделить гомогенные в жидкой фазе бинарные азеотроиы на два практически чистых компонента, ибо одним из концевых продуктов колонны всегда оказывалась бы кипяш,ая при постоянной температуре азеотропная смесь. Однако если при изменении Бнешпего давления состав азеотропной смеси сдвигается в достаточной степени, то использование двухколонной схемы ректификации позволяет сравнительно просто осуш,ествить разделение гомоазеотропа на два практически чистых компонента. [c.325]

    Гомогенные в жидкой фазе азеотропы не могут быть разделены обычными средствами на свои два практически чистых компонента, нбо одним из концевых продуктов колонны всегда оказывается смесь, кипящая нри постоянной температуре. Путем изменения внешнего давления можно передвинуть азеотрон-ный состав в область концентраций, отвечающих нрактиче-скп приемлемой чтгстоте одного из компонентов системы, и тогда ректификация на практически чистые составляющие окажется уже возмоишой. Это один путь. [c.293]

    После исчезновения фазы о система снова делается двухфазной. Теперь отдача теплоты вновь сопровождается понижением температуры, причем состав жидкой фазы изменяется по линии лик-видпуса, а состав твердой фазы—по линии солидуса. Дальнейшие изменения уже разобраны в предыдущих примерах. [c.408]

    Проведем анализ процесса нагревания системы состава й1. При нагревании системы до температуры Т1 изменения фазового состояния не наб.1юдается. Нагревание кристаллов А и ДхВ отражено на диаграмме плавкости стрелками на ординатах А и А Вр. При температуре 7, начинается плавление системы. На кривой нагревания должна наблюдаться температурная остановка, так как эвтектика плавится. Сос ав твердой и жидкой фаз нетиеняется, температура остается постоянной, пока не расплавится вся эвтектика. Далее происходит плавление кристаллов химического соединения АдВ . При этом происходит изменение состава жидкой фазы. Состав твердой фазы остается неизменным АзсВу. В связи с изменением состава жидкой фазы меняется температура плавления. При температуре состав жидкой фазы стано-вит( я равным йь т. е. равным составу исходной системы. При этой температуре расплавится последний кристалл АхВ . Далее будет происходить нагревание жидкого расплава без изменения фазового состояния системы. [c.230]

    Когда объем паровой фазы значительно превышает объем жидкой фазы, то для насыщения расходуется уже значительное количество легкоиспаряющихся углеводородов, при этом состав жидкой фазы меняется. В состоянии насыщения паровая фаза находится в равновесии с жидкостью уже измененного состава. Давление насыщенных паров здесь отличается от давления насыщенных паров, определенного при небольшом объеме паровой фазы. Иными словами, с увеличением отношения паровой фазы к жидкой найденное давление насыщенных паров будет уменьшаться (рис. 6). В связи с этим величины давления, полученные по методу Рейда, обычно на 60—80 мм рт. ст. ниже значений, определенных по методу Валявского—Бударова. [c.40]

    Охлаждение системы на диаграмме кипения отражается изменением фазового состояния системы в обратной последовательности. При 323,7 К начинается конденсация системы. Молярный состав первой капли конденсата 94 % СН3СОСН3. Из пара преимущественно в жидкую фазу переходит ацетон. Отсюда видно, что пар обогащается сероуглеродом. Состав пара и температура конденсации меняются. Вместе с изменением состава пара меняется и состав жидкой фазы, находящейся в равновесии с паром. При 317,5 К состав жидкой фазы становится таким же, как и состав исходного пара. Конденсация заканчивается. Система становится гомогенной. [c.216]

    Смыкание кривых ликвидуса и солидуса (точка е) означает тождественность составов сосуществующих фаз. Поэтому охлаждение систем, представленных на рис. 2.38, и любых смесей, представленных на рпс. 2.39 (кроме смеси состава е), приводит к выделению кристаллов твердого раствора, состав которого отличается от состава жидкой фазы. Это в свою очередь вызывает ностепенное изменение состава расплава и, как следствие, температуры его отвердевания (см. участки кривых, показанные елочками па рпс. 2.39 а). Охлаждеш[е. же смеси состава, соответствующего точке е, приводит к отвердеванию всей системы при неиз-мепиостп состава. Поэтому для иих кривая охлаждения будет подобна кривой 1 на рис. 2,34. Аналогичные рассуждения применимы и к процессам нагревания (рпс, 2.396). [c.294]

    На рис. 71 и 72, в отличие от рис. 70, существует точка, в которой кривые ликвидуса и солидуса смыкаются, что означает тождествеьпюсть составов сосуществующих фаз (точка е). Поэтому для систем, представленных на рис. 70 и для любых смесей, представленных на рис. 71 и 72 (кроме смеси е па последних), охлаждение приводит к кристаллизации твердого раствора, состав которого отличается от состава жидкой фазы. Это, в свою очередь, вызывает постепенное изменение состава расплава и, как следствие, температуры его отвердевания (см. елочки на рис. 71 ). Для составов же, соответствующих точке е, охлаждение приводит к отвердеванию всей массы при неизменности состава. Поэтому для них кривая охлаждения будет подобна кривой / на рис. 65. Аналогичные рассуждения применимы и к процессам нагревания (см. рис. 72). [c.222]

    Незначительные изменения давления практически не влияют на состояние системы, поэтому, применяя правило фаз и определяя условную ва-риантность системы, можно пользоваться соотношением Сусл = К—Ф + 1. Так, жидкий расплав (одна фаза) является системой условно двухвариантной (Сусл = 2). Состав расплава и его температуру можно изменять независимо (в соответствующих пределах). Пусть сплав, содержащий 17 вес.% (10 атомн.%) свинца, находится первоначально при температуре более высокой, чем температура плавления олова, например в состоянии, изображаемом точкой А. Охлаждение его показано на нашей диаграмме вертикальной прямой АВ, причем при температуре 232°С в состоянии расплава не произойдет каких-либо изменений, и лишь когда температура понизится до 208° С, из жидкого расплава начнут выделяться кристаллы олова с небольшим (около 2%) содержанием растворенного в нем свинца. Система становится двухфазной и, следовательно, условно одновариантной (Су(.,л=1). При дальнейшем охлаждении будет продолжаться выделение твердого раствора р, вследствие чего остающийся жидкий расплав становится богаче свинцом, и по мере повышения его процентного содержания температура выделения твердого раствора понижается. Состояния двухфазной системы представляются точками прямой ВС,, а состояния жидкого расплава — соответствующими точками кривой ВЭ, как показано стрелками. Процесс будет протекать, пока температура не понизится до эвтектической температуры, при которой начнут выделяться и кристаллы свинца, содержащие 19,5% растворенного в них олова. Система станет таким образом трехфазной и, следовательно, условно безвариантной (С усл = 0). Температура будет оставаться постоянной, пока не отвердеет весь расплав. Таким образом, процесс отвердевания сплава происходит не при одной температуре, а в некотором температурном интервале — от температуры начала кристаллизации до эвтектической. Для сплавов любого состава в этой системе эвтектическая температура (183,3° С) является температурой, при которой происходит окончательное отвердевание расплава. В диаграмме рис. 117 линия солидуса в центральной части диаграммы представляется изотермой 183,3° С, а в обеих областях более разбавленных растворов — кривыми, соединяющими эту изотерму с точками, отвечающими температурам плавления чистых компонентов. Линия ВЭ, изображающая изменение состава жидкой фазы в процессе кристаллизации, носит название пути кристаллизации. [c.341]

    Проследим изменение фазового со стояния системы при ее охлаждении. При охлаждении системы до температуры Ti система гомЬгенная, одна жидкая фаза. При температуре Ti начинается кристаллизация компонента А (точка 2). Так как из расплава в твердую фазу выделяется только компонент А, то соотношение концентраций компонентов В и С в жидком расплаве не меняется. На плоском треугольнике основания призмы такой процесс отражается линией Г—3. Состав расплава меняется по линии 2—3. В точке 3 расплав становится насыщенным не только компонентом А, но и компонентом В. Точка 3 соответствует температуре Т При этой температуре из расплава начинает кристаллизоваться совместно с компонентом А компонент В. Состав расплава меняется по линии 3—g. На плоском треугольнике этот процесс отражается также линией 3 —g. Тройная эвтектика (точка g) находится при температуре Т . При температуре Т вся система кристаллизуется и будет гетерогенной, трехфазной. При дальнейшем охлаждении системы охлаждаются кристаллы компонентов А, В и С, что отражено на диаграмме стрелками на ребрах призмы. Весь процесс охлаждения системы на рис. 33 отражен стрелками. [c.242]

    К начинается конденсация системы. Молярный состав первой капли конденсата 94% СН3СОСН3. Из пара преимущественно в жидкую фг зу переходит ацетон. Отсюда видно, что пар обогащается сероуглеродом. Состав пара и температура конденсации меняются. Вместе с изменением состава пара меняется и состав жидкой фазы, находящейся в равновесии с паром. При 317,5 К состав жидкой фазы становится таким же, как и состав исходного пара. Конденсация заканчи-Еается, Система становится гомогенной. [c.295]

    Множители при (1Р и йТ имеют определенный физический омысл. Множитель при (1Р выражает отнесент.е к одному молю смеси изменение объема при изобарно- изотермическом смешении небольшого количества паровой фазы с т (к им большим количеством жидкой фазы, что ее состав не изменяется. [c.16]

    Если составы исходной смеси и пара различны, например жидкая смесь обогащена компонентом В (точка х ), то при давлении (точка D) будут испаряться обе жидкости и образуется насыщенный пар> состава х (точка С). Когда при испарении весь компонент А перейдет в пар, останется одна жидкая фаза, представляющая собой компонент В. Дальнейшее испарение жидкого компонента В приведет к изменению состава пара от х до х и к понижению давления (фигуративная точка Е). Во всем интервале давлений от точки D до точкис пар насыщен относительно компонента В и ненасыщен (перегрет) относительно компонента А. Дальнейшее понижение давления до точки F приведет к тому, что пар станет ненасыщенным и относительно компонента В. На диаграмме (рис. 140) можно выделить четыре области / — перегретый пар // — жидкий компонент А и пар, состав которого определяется точками, лежащими на кривой аС III — жидкий компонент В и пар, состав которого определяется точками, лежащими на кривой ЬС IV — две жидкие фазы (практически чистые компоненты). [c.399]

    Процесс охлаждения системы с молярной долей ССЦ 50 % будет обратным разобранному. Пусть исходная система имеет молярный состав 50 % I4. При 350 К эта система (точка g) находится в состоянии пара. При охлаждении ее до 345,4 К система станет гетерогенной, появится первая капля жидкой фазы. Ее молярный состав 84 % ССЦ. Так как из пара в жидкую фазу преимущественно уходит I4, то пар обедняется I4 и его состав изменяется по кривой ab . Вместе с изменением состава пара меняется и состав жидкой фазы, находящейся с паром равновесии. Изменение состава кипящей жидкости происходит по кривой ad . Изменение составов жидкой и паровой фаз приводит к изменению температуры конденсации. При 338 К состав жидкой фазы станет равным составу исходного пара. При этой температуре система станет гомогенной, исчезнет последняя порция пара. При дальнейшем охлаждении состав жидкой фазы не изменяется. [c.214]

    Проследим процесс нагревания системы, состав которой Oi. До температуры система находится в кристаллическом состоянии. В равновесии находятся кристаллы А и кристаллы химического соединения Ад Ву. При температуре Tj происходит плавление эвтектики состава э. Составы жидкой и твердой фаз остаются неизменными, пока не расплавится вся эвтектика. Отсюда температура на кривой охлаждения не меняется. Далее начинается плавление кристаллов АхВд. При этом состав жидкого расплава меняется. Состав твердой фазы остается неизменным. При температуре Ti химическое соединение становится неустойчивым. Оно разлагается на кристаллы В и расплав. Так как система становится при температуре Ti безвариантной, то на кривой нагревания наблюдается температурная остановка. После исчезновения последнего кристалла химического соединения А Ву начинается плавление кристаллов компонента В. Состав расплава вновь начинает меняться, меняется и температура плавления системы. При температуре Т3 состав расплава становится таким же, как и состав исходной системы flj. При этой температуре исчезает последний кристалл компонента В, система становится гомогенной и при дальнейшем нагревании ее фазовое состояние не меняется. Процесс нагревания и связанный с ним процесс изменения фазового состояния системы на диаграмме плавкости показаны стрелками. [c.243]


Смотреть страницы где упоминается термин Жидкая фаза изменение состава: [c.9]    [c.127]    [c.86]    [c.202]    [c.400]    [c.230]    [c.231]    [c.204]    [c.204]    [c.206]    [c.259]    [c.297]    [c.297]    [c.387]    [c.214]    [c.216]    [c.242]   
Газовая хроматография с программированием температуры (1968) -- [ c.266 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза



© 2025 chem21.info Реклама на сайте