Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкоземельные элементы степени окисления

    К редкоземельным металлам относятся элементы скандий, иттрий и лантан, а также элементы от церия до лютеция. По-след-ние называют лантаноидами . Главная степень окисления всех редкоземельных металлов -+-3. Церий, празеодим и тербий относительно легко приобретают степень окисления +4, а евро-лий, иттербий и самарий +2. [c.607]

    В химической промышленности применяют экстракцию для извлечения уксусной кислоты из разбавленных водных растворов, муравьиной кислоты из ее азеотропной смеси с водой аконитовой кислоты из патоки кислот, альдегидов, кетонов и спиртов из продуктов окисления природного газа хлорбензола в производстве синтетического фенола для обезвреживания промышленных стоков для очистки едкого натра от хлоридов и хлоратов натрия для выделения перекиси водорода из продуктов каталитического гидрирования 2-этилантрахинона для получения высококачественной фосфорной кислоты, силиконов высокой степени чистоты и др. Методом экстракции пользуются в коксохимической промышленности (извлечение фенолов и ароматических углеводородов), в химико-фармацевтической (выделение многочисленных природных и синтетических соединений, в том числе антибиотиков и витаминов) в пищевой промышленности (для очистки масел и жиров) в металлургических процессах (для извлечения урана и тория, для регенерации облученного ядерного горючего, для разделения ниобия и тантала, циркония и гафния, редкоземельных элементов) и т. д. [c.562]


    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в гл. I, 5. Для иллюстрации внутренней периодичности в табл. 5 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 3) с уменьшением атомных радиусов в результате лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Gd) сопровождается уменьшением третьего ионизационного потенциала на 4 В, У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/ -оболочка. У гадолиния же при той же устойчивой 4/,-оболочке появляется один электрон на Sii-оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5 /°-оболочку неустойчивой. Для элементов, следующих за Gd, вновь наблюдается монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Благодаря стабильности указанной 4/ -оболочки европий часто функционирует в степени окисления 4-2 за счет бз -электронов, а один из семи неспаренных электронов на 4/ -оболочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/ -обо-лочка. В случае самария и тулия, находящихся левее указанных [c.172]

    Металлы с достраивающимися /-слоями образуют две группы очень похожих между собой элементов — лантаноидов и актиноидов. Каждое семейство /-элементов состоит из четырнадцати элементов. Лантаноиды (4/-элементы) называют редкоземельными элементами из-за малой их распространенности и рассеянности в природе. В химическом отношении они чрезвычайно похожи и могут быть разделены с очень большим трудом. Типичная степень окисления равна +3. По химическим свойствам и активности лантаноиды близки к щелочноземельным металлам. Среди актиноидов (5/-эле- [c.141]

    ЦЕРИЙ ( erium, от названия астероида Церис) Се — химический элемент П1 группы 6-го периода периодической системы элементов Д. И. Менделеева, относится к лантаноидам, п. н. 58, ат. м. 140,12. Природный Ц. состоит из 3 стабильных изотопов, известны около 15 радиоактивных изотопов. Открыт Ц. в 1803 г. Берцелиусом и Хизингером и независимо от них Клапротом. Основным сырьем для получения Ц. является минерал монацит. Ц.— мягкий металл серого цвета, т. пл. 804 С. Химически активен. В соединениях проявляет степень окисления +3 и +4, чем и отличается от других редкоземельных элементов. Ц. применяют в производстве высокоплас-тичных и термостойких сплавов, для изготовления стекла, не темнеющего под действием радиоактивного излучения, для дуговых электродов, кремней зажигалок и др. Соли Ц. (IV) — сильные окислители, используются в аналитической химии для определения различных восстановителей. [c.283]


    Определение ионов переменной валентности состоит в электрохимическом переведении определяемых ионов в такую степень окисления, которая образует с какими-либо анионами раствора малорастворимые соединения, осаждающиеся на поверхности электрода. Последующее электрохимическое окисление или восстановление ионов металла в осадке на электроде связано с протеканием тока, который фиксируется. Он пропорционален содержанию ионов металла в первоначальном растворе. Примером может служить определение церия. Ионы церия (П1) окисляются на электроде до Се +. Последние при некотором pH концентрируются на электроде в виде осадка Се (ОН) 4. Затем проводят катодное восстановление церия в осадке и измеряют ток, пропорциональный содержанию церия в исходном растворе. Описанным методом церий можно определить в присутствии больших количеств редкоземельных элементов. Существуют и другие примеры таких определений. [c.499]

    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в 5 гл. X. Для иллюстрации внутренней периодичности в табл. 25 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 24) с уменьшением атомных радиусов вследствие лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Gd) сопровождается уменьшением третьего ионизационного потенциала на 4 В. У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/-оболочка. У гадолиния же при той же устойчивой 4/-оболочке появляется один электрон на 5 -оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5( 0-оболочку неустойчивой. Для элементов, следующих за Сс1, вновь наблюдается Монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Вследствие стабильности 4/-оболочки европий часто функционирует в степени окисления +2 за счет бб -электронов, а один из семи неспаренных электронов на 4/оболочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/4-оболочка. В случае самария и тулия, находящихся левее указанных выше Ей и УЬ, 4/- и 4/З-оболочки близки к достижению стабильного состояния, а потому в основном проявляют характеристические степени окисления. Но эти же элементы в более мягких условиях могут быть в степени окисления +2 за счет бя -электронов при квазистабильных 4/- и 4/3-оболочках. Для элементов начала внутренних периодов — Ьа и Сс1 — наблюдается только степень окисления +3 вследствие устойчивости 4/>- и 4/-оболочек, полностью вакантной или наполовину заполненной. А электронами, участвующими в химическом взаимодействии, у них являются 5<Лб 2-электроны, т.е. по три электрона. Следует отметить, что заполненные бв-орбитали также должны быть стабильны, но для лантана и лантаноидов электроны на них являются внешними, а потому слабее связанными с ядром и вследствие этого наиболее подвижными. У [c.351]

    Крупные многозарядные ионы редкоземельных элементов в кристаллах сложных оксидов приводят к высоким (8 и более) координационным числам лантаноидов. Это в свою очередь обусловливает уникальные возможности стабилизации сложных кристаллических структур и аномально высоких степеней окисления других металлических компонентов, например меди -[- 3. Не случайно, что именно на основе лантаноидов и иттрия создана высокотемпературная сверхпроводящая оксидная керамика. [c.153]

    Подгруппу образуют шесть элементов Ве, Mg, Са, Зг, Ва и Ка. Радий не имеет стабильных изотопов, в микроколичествах сопутствует урану. Химию радия, как и других радиоактивных изотопов, изучает радиохимия. Ввиду большого сходства в свойствах Са, 8г и Ве со щ елочными металлами 1А подгруппы их часто называют щелочно-земельными металлами. Атомы всех элементов имеют электронную структуру па , поэтому единственная степень окисления +2. Все металлы являются хорошими восстановителями, хотя, ввиду большего потенциала ионизации, и более слабыми, чем щелочные металлы (см. табл. 3, раздел 4.5). Из-за значительного увеличения размера атома от Ве к Ва и уменьшения потенциала ионизации восстановительная способность увеличивается в этом ряду настолько, что Са, 8г и Ва разлагают воду с выделением водорода и должны храниться, как и щелочные металлы, под слоем керосина или масла. На высокой восстановительной способности основано применение магния и кальция в металлотермических процессах для восстановления элементов из оксидов титана, урана, бора, редкоземельных и других элементов. [c.136]

    ГАДОЛИНИИ (от имени Ю. Гадолина лат. Gadolinium) Gd, хим. элемент III гр. периодич. системы, ат. н. 64, ат. м. 157,25 относится к редкоземельным элементам (входит в иттриевую подгруппу лантаноидов). Состоит из семи стабильных изотопов с мае. ч. 152, 154-158, 160. Поперечное сечение захвата тепловых нейтронов 4,6-10 м . Конфигурация внеш. электронных оболочек 4/ 5s 5p 5d 6s степень окисления + 3, редко н- 2 и н- 1 энергия ионизации Gd -  [c.450]


    САМАРИЙ (обнаружен в минерале самарските, названном в честь рус. геолога В. Б. Самарского-Быховца лат. Samarium) Sm, хим. элемент 111 гр. периодич. системы относится к редкоземельным элементам (цериевая подгруппа лантаноидов) ат.н. 62, ат.м. 150,36. Природный С, состоит из стабильных изотопов Sm (3,09%), Sm (11Д7%), Sm (13,82%), Sm (7,47%). Sm (26,63%), Sm (22,53%) и радиоактивного изотопа Sm (15,07%, Т, 2 1,3-10 лет, а-излучатель). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 5,6-10 м . Конфигурация внеш. электронных оболочек атома 4/ 5i 5р степени окисления -Ь 3, -Ь 2 и, вероятно, + 4 энергии ионизации при последоват. переходе от Sm к Sm соотв. 5,63, 11,07, 23,43, 41,37, 62,7 эВ электроотрицательность по Полингу 1,0-1,2 атомный радиус 0,181 нм, ионные радиусы (в скобках даны координац. числа) Sm 0,136 нм (7), 0,141 нм (8), 0,146 нм (9), Sm 0,110 нм (6), 0,116 нм (7), 0,122 нм (8), 0,127 нм (9), 0,138 нм (12). [c.289]

    Для -металлов характерно образование ионов со степенью окисления ниже максимальной. Такие ионы имеют частично заполненные -оболочки. Редкоземельные элементы и актиноиды в степени окисления +3 имеют частично заполненные /- или -оболоч- [c.219]

    К обсуждаемой подгруппе относятся и лантаноиды — 14 элементов, следуюи1,их за лантаном, для которых характерно заселение (п—2)/-орбиталей. Все лантаноиды вместе с иттрием п лантаном именуются редкоземельными элементами (РЗЭ). Название происходит от средневекового наименования природных оксидов — земли (как и щелочно-земельных металлов). К ним обычно не относят скандий. Элементы подгруппы скандия (Зс, У и Ьа) проявляют характеристическую степень окисления +3, а некоторые лантаноиды, помимо указанной главной степени окисления, еще проявляют степени окисления +2 и +4. [c.168]

    ДИСПРОЗИЙ (от греч. dysprositos-труднодоступный лат. Dysprosimn) Dy, хим. элемент 1П гр. периодич. системы относится к редкоземельным элементам (иттриевая подгруппа лантаноидов), ат. и. 66, ат. м. 162,50. Состоит из 7 стабильных изотопов Dy, Dy, Dy, Dy, Dy, Dy и Dy. Поперечное сечение поглощения тепловых нейтронов 10 м . Конфнгурахщя внеш. электронных оболочек 4/°5i 5p 5d 6j, степени окисления -ЬЗ, реже +2, +4 энергия ионизации Dy° - Dy -> Dy " - Dy " - Dy соотв. 5,93, 11,67, 22,79, 41,47 зВ атомный радиус 0,177 нм, ионный радиус (в скобках указано координац. число) Dy 0,121 нм (6), 0,127 нм (7), 0,133 нм (8), Dy 0,105 нм (6), 0,111 нм (7), 0,117 нм (8), 0,122 нм (9), Dy "- 0,087 нм (8). [c.82]

    Во ВНИИСИМСе исследовали спектры оптического поглощения кристаллов ИАГ синего (с Eu +) и зеленого (с Yb +) цветов, снятых на спектрофотометрах СФ-8 (УФ и видимая область) и И-20 (ИК диапазоны). Диапазон измерений 2000—50 000 см . Съемка проводилась при 100 и ЗООК. По данным исследований-, двухвалентные редкоземельные ионы в основном состоянии изо-электронны трехзарядным ионам элементов соседних по периодической системе со стороны больших г. В связи с этим можно было бы ожидать значительного сходства в схемах их термов и термов соответствующих ионов в степени окисления 3. Это действительно имеет место, пока речь идет о термах конфигурации 4/. Однако наиболее характерная черта энергетических схем ионов TR +— относительно низкое расположение термов смешанных конфигураций, обусловленных слабостью связи добавочного 4/-электрона. В результате этого в оптических спектрах, наряду с вышерассмотренными типичными для редких земель запрещенными переходами в пределах конфигурации 4/, проявляются переходы в смешанные конфигурации 4f - Ьd и т. п. [19]. Эти переходы разрешены правилом Д/ = —11 и проявляются в виде широких интенсивных полос поглощения в относительно длинноволновой области спектра. [c.182]

    ЛАНТАН (от греч. lanthano-скрываюсь лат. Lanthanum) La, хим. элемент III гр. периодич. системы, ат. н. 57, ат. м. 138,9055 относится к редкоземельным элементам. Прир. Л. состоит из двух изотопов La (99,911%) и радиоактивного La (0,089% 2 -10 лет). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 9-10" м . Конфигурация внеш. электронной оболочки 5 6i степень окисления -I- 3 энергия ионизации при последоват. переходе от La к La соотв. 5,5770, 11,06 и 19,176 эВ атомный радиус 0,187 нм, ионные радиусы (в скобках указаны координац. числа) La 0,117 нм (6), 0,124 нм (7), 0,130 нм (8), 0,136 нм (9), 0,141 нм (10), 0,150 нм (12). [c.577]

    Предварительное концентрирование металла в объем ртутного микроэлектрода обычно проводят при потенциале предельного тока восстановления исследуемого иона. Этим путем можно получить амальгамы металлов I и II групп периодической системы, редкоземельных элементов, а также таллия, индия, галлия, цинка, кадмия, свинца, висмута, алюминия, меди, серебра и золота (рис. 11.1). Однако щелочные металлы имеют столь отрицательные потенциалы восстановления, что их концентрирование из водных растворов практически невозможно. Как правило, эти металлы определяют в органических средах, например, в диметилформамиде на фоне четвертичных аммониевых солей. То же в значительной степени относится и к щелочноземельным металлам. Кроме того, из-за близости потенциалов окисления металлов I и II групп нельзя ожидать высокой селективности при огфеделении данных ионов. Поэтому метод ИВА практически не применяется для определения щелочных и щелочноземельных металлов. [c.417]

    ИТТЕРБИЙ (от назв. селения Иттербю, Ytterby в Швеции лат. Ytterbium) Yb, хим. элемент III гр, периодич. системы, ат. н, 70, ат. м. 173,04 относится к редкоземельным элементам (иттриевая подгруппа). Прир, И. состоит из 7 стабильных изотопов Yb (0,14%), Yb (3,03%), Yb (14,31%), i Yb (21,82%), Yb (16,13%), i Yb (31,84%) и Yb (12,73%). Конфигурация внеш. электронных оболочек 4/ 5i 5p 6i степени окисления -1-3 и - -2 энергия ионизации при последоват. переходе от Yb к Yb соотв, 6,2539, 12,17 и 25,50 эВ атомный радиус 0,193 нм, ионный радиус (в скобках указаны координац. числа) Yb 0,101 нм (6), 0,107 нм (7), 0,113 нм (8), 0,118 нм (9), Yb 0,116 нм (6), 0,122 нм (7), 0,128 нм (8). [c.276]

    ПРОМЕТИЙ (по имени титана Прометея в др.-греч. мифологии лат. Ргоше1шш) Рт, хим. элемент III гр. периодич. системы относится к редкоземельным элементам (церневая подгруппа лантаноидов) ат. н. 61, ат. м. 144,9128. В природе стабильных изотопов не имеет. Наиб, долгоживущие изотопы- Рш(Г1,2 18 лет), Рш(Г1,22 года), Рш(Г1,2 2,64 года). Конфетурация внеш. электронных оболочек атома степень окисления -ЬЗ энергин ионизации при последоват. переходе от Рт° к Рт соотв. 5,55, 10,90, 2 32, 41,09, 61,7 эВ атомный радиус 0,182 нм, ионный радиус Рш 0,111 нм (координац. число 6). [c.100]

    Одно из самых наглядных достоинств периодической системы заключается в возможности предсказания с ее помощью наиболее вероятной валентности элемента. Элементы групп I — III, как правило, характеризуются степенью окисления 1, 2 и 3 соответственно. Степень окисления почти всех остальных элементов соответствует номеру их группы, однако возможны отклонения, особенно для элементов центральной части периодической таблицы. Например, элементы Ti, V, Сг, Мп, относящиеся к группам IVE, VB, VIE и VIIE, обнаруживают соответствующие этим группам степени окисления, хотя это не всегда наиболее типичные или устойчивые состояния для указанных металлов. Далее, все лантаноиды (редкоземельные металлы) относятся к III группе, и несмотря на то, что они характеризуются различными степенями окисления, для всех них наиболее типична степень окисления -t-3. У неметаллов, например галогенов, относящихся к VII группе, проявляются степени окисления 7 и — 1, у элементов VI группы, таких, как кислород, сера, селен и теллур, наиболее распространена степень окисления —2. Вместе с тем элементы IV группы — углерод, кремний и германий—почти всегда четырехвалентны. Таким образом, имеется возможность довольно надежно предсказывать наиболее вероятную степень окисления элемента по его положению в периодической таблице тем не менее следует пользоваться периодической таблицей лишь как полезным ориентиром, не считая ее непогрешимым источником сведений о степенях окисления элементов. [c.105]

    СКАНДИЙ (S andium) S , хим. элемент III гр. периодич. системы, ат. н. 21, ат. м. 44,9559 относится к редкоземельным э цементам. Известен один прир. стабильный изотоп S . Поперечное сечение захвата тепловых нейтронов 1,66-10м . Конфигурация внеш. электронных оболочек атома Зй 4s устойчивая степень окисления + 3, редко -(- 1 -Ь 2 энергии ионизацйи при последоват. переходе от S к S " равны соотв. 6,5616, 12,80 и 24,76 эВ сродство к электрону — 0,73 эВ электроотрицательность по Полингу 1,3 атомный радиус 0,164 нм, ионный радиус S 0,089 нм (коорд1шац. число 6), 0,101 нм (8). [c.359]

    ТУЛИЙ (от Греч. Thule - Туле, у античных географов - крайний северный предел мира лаг. Thulium) ТЪ, хим. элемент Ш ф. периодич. системы относится к редкоземельным зяе-ментам (иттриевая подфуппа лантаноидов), ат. н. 69, ат. м. 16Й,9342, В природе один стабильный нуклид Тт. Конфигурация внеш. электронных оболочек атома 4/ 5s 5p 6s степени окисления +3, +2, реже +4 энергии ионизации при по-следоват. переходе от Тш к Тт соотв. 6,181, 12,05, 23,68, 42,69, 65,4 эВ ялектроотрицатеяьность по Полингу 1,0-1,2 атомный радиус 0,174 нм, ионные радиусы Тт (в скобках указаны координац, числа) 0,102 нм (6), 0,113 нм (8), 0,119 нм (9), 0,117 нм (6), 0,123 нм (7). [c.16]

    Скандий S (лат. S andium). С.— элемент П1 группы 4-го периода периодич. системы Д. И. Менделеева, п. н. 21, атомная масса 44,956. Имеет один стабильный изотоп S . С. был предсказан Д. И. Менделеевым в 1870 г. и условно назван им эка-бором. В 1879 г. С. был открыт Л. Нильсоном при разделении редкоземельных элементов, полученных из минерала гадолинита, впервые найденного в Скандинавии (отсюда и название элемента). С. содержится в виде примеси во многих минералах. С,—серебристый металл с характерным желтым отливом. Проявляет достаточно высокую химическую активность, при обычной температуре взаимодействует с кислородом. Растворяется в кислотах (НС1, H2SO4, ННОз). В соединениях С.,проявля-ет степень окисления +3. С. извлекают попутно при переработке уранового, вольфрамового и оловянного сырья, получают его из отходов производства чугуна. Применяют С. в основном в виде сплавов с различными металлами для изготовления ферритов с малой индукцией (для быстродействующих вычислительных машин), в ядерной технике, металлургии, медицине, стекольной и химической промышленности. [c.122]

    НВг Вга, Н2О СеОз (10%) на ZrO. 225° С, НВг воздух = = 2 3. Через 3 ч степень окисления 88%, через 35 ч —99% [46] Хлориды Си — редкоземельные элементы це-риевой подгруппы — К, на активной AL 0 , 350° С, 2 ч. Степень превращения НВг в Вг., — 99% [28] [c.302]

    А12О3 даЗЮа г/НаО, гдеМе — металл 16 — УП1 групп периодической системы (в том числе Ag), п— степень окисления этого металла, w и у — число молей 5102 и НаО соотношение Ме А1 равно 0,5—1,0 г-экв на 1 г-атом А1. Конверсию алканов ведут в смеси с низшими олефинами (этилен, пропилен мол. отношение олефин ал-кан = 0,15—1,5) при 120—160° С, 2—13 бар и времени контакта 5—20 сек [177]. В другом патенте [1781 рекомендуется катализатор дегидрирования насыщенных или олефиновых углеводородов, состоящий из смеси соединений щелочного металла (Ы, К, МаХ соединений щелочноземельного металла (Са, 5г, Ва), соединения Ag и (или) соединения редкоземельного элемента. Используются окиси, гидроокиси, карбонаты, сульфаты, бромиды перечисленных металлов. К смеси добавляются также соединения переходных металлов 2г, Т1, V, Сг, Мо, Мп, Ре, Со, N1, Рс1, Си и А отношение щелочной металл переходный металл редкоземельный элемент составляет 4 1 1. Окись серебра (возможно превращение в процессе реакции в металлическое серебро) исследовалась в числе окисей других металлов как катализатор дегидрирования пропана в пропилен. Однако было показано, что Ag20 менее селективна в данном случае, чем иОз [77]. [c.172]

    ГОЛЬМИЙ [Holmium от лат. Holmia — Гольмия (назв. Стокгольма)], Но—хим. элемент III группы периодической системы элементов ат. п. 67, ат. м. 164,9304 относится к редкоземельным элементам. Металл светло-серого цвета дистиллированный (чистотой выше 99,5%) — с блестящей поверхностью. В соединениях проявляет степень окисления +3. Известны изотопы с массовыми числами от 160 до 169, из них стабилен изотоп с массовым числом 165. Открыт в 1879 швед, химиком П. Клеве. Содержание в земной коре 1,3 X X 10 %. Пром. минералами для получения Г. служат монацит, ксенотим и эвксепит. Г. полиморфен, т-ра полиморфного превращения 1430° С. Кристаллическая решетка низкотемпературной модификации Г.—гексагональная плотноупакованная типа магния, с периодами а = 3,5773 А и с =  [c.299]

    ЕВРОПИЙ (Europium от греч. Eupa nr — Европа), Ей — хим. элемент III группы периодической системы влементов ат. н. 63, ат. м. 151,96 относится к редкоземельным элементам. Серебристо-белый металл. В соединениях проявляет степени окисления -f2 и -f3. Природная смесь содержит стабильные изотопы с массовыми числами 151 (47,82%) и 153 (52,18%). Получены радиоактивные изотопы с массовыми числами от 143 до 160 и с периодами полураспада от нескольких минут до 16 лет. Е. открыл в 1901 франц. химик Э. Демарсе. Содержание элемен-ца в земной коре 1,2 10 -ч. Пром. минералом для получения Е. служит монацит. Кристаллическая решетка Е. объемноцентрированная кубичес- [c.410]


Смотреть страницы где упоминается термин Редкоземельные элементы степени окисления: [c.204]    [c.534]    [c.106]    [c.590]    [c.126]    [c.578]    [c.619]    [c.209]    [c.531]    [c.59]    [c.409]    [c.106]    [c.409]    [c.347]    [c.534]    [c.240]    [c.383]    [c.517]   
Использование радиоактивности при химических исследованиях (1954) -- [ c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Окисления степень

Окисленность элементов

Степень окисления элементов

Элементы редкоземельные



© 2025 chem21.info Реклама на сайте