Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Репрессия механизм

Рис. 32. Триптофановый оперон Е. соИ и механизм репрессии конечным Рис. 32. <a href="/info/33181">Триптофановый оперон</a> Е. соИ и <a href="/info/150188">механизм репрессии</a> конечным

    Регуляция биосинтеза аминокислот, основанная на изменении концентрации ферментов, — это генный уровень регуляции. Если данная аминокислота присутствует в достаточном количестве, гены, кодирующие ферменты этого пути, репрессируются, когда же ее концентрация снижается, происходит индукция генов и ферменты начинают вырабатываться в большом количестве. Механизм генетической репрессии приведен в главе 29. [c.407]

Рис. 25.4. Регуляция синтеза гема по механизму репрессии и дерепрессии синтеза АЛ-синтазы в процессе транскрипции Рис. 25.4. <a href="/info/1898866">Регуляция синтеза гема</a> по <a href="/info/150188">механизму репрессии</a> и дерепрессии синтеза АЛ-синтазы в процессе транскрипции
    Развитие многоклеточных эукариотических организмов основано на способности клеток передавать в ряду поколений активное или, наоборот, репрессированное состояние гена. Наследование состояния гена приводит в конечном итоге к образованию дифференцированной ткани, состоящей из клеток, в которых лишь небольшая часть генов активирована на фоне репрессии основной части генома. Исследование молекулярных механизмов, обеспечивающих наследование активного или неактивного состояния гена в ряду клеточных поколений, представляется чрезвычайно важным. По-видимому, в основе этих механизмов лежат не только программированные взаимодействия белков и ДНК, обеспечивающие наследуемую локальную организацию хроматина, но и процессы метилирования ДНК. Метилирование можно расс.матривать как особый механизм контроля транскрипции, существующий наряду с механизмами, основанными на взаимодействиях между цис-действую-щими регуляторными элементами и факторами транскрипции. [c.218]

    Известно, что бактериальная клетка не допускает избыточной продукции рибосомных белков. Практически их синтезируется столько, сколько требуется для сборки рибосом, в соответствии с количеством образующейся рибосомной РНК, и сколько-нибудь серьезного избытка свободных рибосомных белков в нормальной клетке не бывает. Поразительно одинаковый и координированный уровень продукции всех 52 рибосомных белков достигается несмотря на то, что их гены вовсе не организованы в единый регулируемый блок, а представлены независимыми приблизительно 16 оперонами, распределенными по геному клетки. Оказалось, что координированно одинаковая продукция практически всех рибосомных белков и отсутствие их избыточной продукции поддерживаются регуляторным механизмом, обеспечивающим репрессию трансляции избытком белка (трансляционная регуляция по принципу обратной связи). [c.237]


    Роль важного регуляторного агента в бактериальных клетках играет циклический АМР (сАМР, гл. 7, разд, Д, 8). Примером процесса, опосредованного участием сАМР, может служить катаболитная репрессия. Сущность этого процесса состоит в ингибировании (катаболитом) транскрипции генов, детерминирующих синтез ферментов, необходимых для катаболизма лактозы или других энергетических субстратов, когда в среде присутствует глюкоза — более эффективный источник энергии. Механизм этого процесса не известен, однако установлено, что в присутствии глюкозы концентрация сАМР снижается. [c.204]

    Как и в случае репрессии, механизм индукции может быть реализован посредством изменения скорости синтеза белка-фермента или превращения готового неактивного предшественника в фермент. Кроме того, субстрат фермента также может при известных условиях связываться с молекулой специфического белка (репрессора) и действовать в качестве индуктора, включая структурный ген, контролирующий синтез того фермента, для которого данный субстрат является компонентом индуктора. [c.437]

    Во вторую группу входят методы, механизм действия которых в основном связан с улучшением охвата пласта воздействием нагнетаемых агентов закачка загущенных агентов и полимерных растворов, методы воздействия углеводородным газом высокого давления, обогащенным газом, жидкими растворителями, применение мицеллярных растворов, водо газовая репрессия и, наконец, все модификации гидродинамических методов (перемена направлений потоков, циклическое воздействие рабочими агентами, при- [c.28]

    Поздняя стадия. С 1984 г., несмотря на достаточно высокую компенсацию отбора жидкости закачкой воды, вновь началось снижение пластового давления в зоне ВНК с 11,3 до 10,2 Мпа. Не задаваясь и на сей раз вопросом о механизмах возмущений режима подземных вод и газов, промысловики продолжали по стандартной схеме наращивать репрессии на пласты. Отнощение закачки к отбору было доведено до 190%, градиент давлений возрос по сравнению с начальным на 1,0 - 1,5 МПа/км и в результате на месторождении  [c.78]

    Таким образом, ведущими механизмами, обеспечивающими экономность образования продуктов в клетках микроорганизмов, являются ретроингибирование и репрессия, базирующиеся на принципе обратной связи. [c.36]

Рис. 3.2. Структура и механизм индукции и репрессии 1ас-оперона (пояснения в тексте) Рис. 3.2. Структура и <a href="/info/33088">механизм индукции</a> и репрессии 1ас-оперона (пояснения в тексте)
    Изменение количества синтезируемых ферментов в клетке идет в результате действия механизмов индукции и репрессии. Индукцией называют процесс увеличения количества соответствующего фермента в клетке под влиянием субстрата. Последний индуцирует образование главным образом ферментов обмена веществ в процессах энергетического катаболизма. Если в состав ДНК входит несколько генОв, определяющих синтез относящихся к разным субстратам ферментов, то в конкретных условиях среды, содержащей определенные субстраты, целесообразно синтезировать только те ферменты, для действия которых в среде имеется субстрат. [c.46]

    Несмотря, однако, на эту сложность, существование некоторых регуляторных механизмов было четко доказано. Выше уже были рассмотрены два типа регуляции, в основе которых лежит принцип обратной связи. Один из них используется при синтезе ферментов и состоит в репрессии этого синтеза избытком фермента (гл. 6, разд. Е,2), а другой обеспечивает быстрый контроль активности фермента путем его ингибирования (гл. 6, разд. Е, 4). Когда имеет место постоянная скорость роста клеток, регуляция по типу обратной связи может оказаться достаточной для того, чтобы обеспечить гармоничное и пропорциональное увеличение концентрации всех составных частей. Такая ситуация наблюдается, например, на логарифмической стадии роста бактерий (гл. 6, разд. В) или в случае быстро растущих эмбрионов животных, когда все необходимые для них питательные вещества поступают из относительно неизменной материнской крови. [c.503]

    Простейший механизм репрессии заключается в стерическом блокировании репрессором присоединения РНК-полимеразы к промотору. Такой механизм имеет место в тех промоторах, в которых участок связывания репрессора перекрывается с участком связывания РНК-полимеразы. Простейший механизм активации заключается в том. что белок-активатор присоединяется к промотору рядом с РНК-полимеразой и за счет непосредственного контакта с ней облегчает образование открытого промоторного комплекса. Дискуссионными являются механизмы действия тех белков-регуляторов, которые присоединяются к ДНК на значительном расстоянии от РНК поли-меразы. Ниже рассмотрено несколько наиболее хорошо изученных примеров, иллюстрирующих различные принципы регуляции промоторов. [c.144]


    Изучение регуляции и контроля ферментов — молодая и быстро развивающаяся область биохимии, уже установившая, однако, ряд весьма сложных механизмов. Представляется возможным различить механизмы, общие для всех ферментов, такие как субстратная специфичность, оптимум pH и т. д. механизмы, общие для всех организмов, включающие ингибирование и репрессию по принципу обратной связи и механизмы, характерные для высших организмов, где существуют другие виды регуляции активности ферментов, например посредством действия гормонов. Приведя только один, уже известный нам пример, можно отметить, что вся сложная система описанных выше реакций, кульминацией которой является высвобождение глюкозы из гликогена, может приводиться в действие несколькими молекулами адреналина [148]. [c.538]

    Как видно из рис. 24, регуляция ферментов биосинтеза аминокислот семейства аспарагиновой кислоты идет как путем ингибирования конечными продуктами, так и при действии механизмов репрессии. [c.51]

    Образование анаболических ферментов (процесс биосинтеза) регулируется главным образом механизмом репрессии. Репрессией называют процесс уменьшения скорости биосинтеза какого-либо фермента или группы ферментов, катализирующих цепную реакцию определенного процесса при помощи специальных веществ — репрессоров. Им может быть конечный продукт [c.48]

    Надо отметить, что регуляторные механизмы индукции и репрессии действуют сравнительно медленно. [c.49]

    Биосинтез антибиотиков, как и любых других вторичных метаболитов, возрастает в фазе замедленного роста клеточной популяции (конец трофофазы) и достигает максимума в стационарной фазе (идиофазе). Считают, что в конце трофофазы изменяется энзиматический статус клеток, появляются индукторы вторичного метаболизма, освобождающие гены вторичного метаболизма из-под влияния катаболитной репрессии. Поэтому любые механизмы, тормозящие клеточную пролиферацию и активный рост, стрессовые ситуации, активируют процесс образования антибиотиков. [c.67]

Рис. 22. Схема регуляторного механизма процесса репрессии I — без конечного продукта, 77 — в присутствии конечного продукта Рис. 22. Схема <a href="/info/1320858">регуляторного механизма</a> процесса репрессии I — без <a href="/info/17660">конечного продукта</a>, 77 — в присутствии конечного продукта
    Биосинтетические пути регулируются преимущественно по механизму аллостерического ингибирования первого фермента и репрессии синтеза ферментов этого пути конечным продуктом. Регулирование разветвленных биосинтетических путей осуществляется с помощью усложненных вариантов этих же механизмов. [c.123]

    Репрессия конечным продуктом. Все биосинтетические пути находятся под контролем механизма репрессии конечным продуктом. Точно так же образование больщинства анаболических ферментов регулируется путем репрессии их синтеза. Репрессия осуществляется особыми присутствующими в клетке веществами — репрессорами. Факторами, модифицирующими активность ре- [c.118]

    Репрессия может быть координированной, т.е. синтез каждого фермента данного пути в одинаковой степени подавляется конечным продуктом. Часто синтез ферментов одного пути репрессируется в разной степени. В разветвленных биосинтетических путях механизмы репрессии могут быть модифицированы (как и механизмы ингибирования), чтобы лучше обеспечить регуляцию нескольких конечных продуктов из общего исходного субстрата. Синтез многих ферментов в таких путях репрессируется только при совместном действии всех конечных продуктов. Если реакция на общем участке разветвленного пути катализируется изоферментами, синтез каждого из них находится под контролем своего конечного продукта (см. рис. 31). [c.119]

    Регуляция может осуществляться на многих уровнях, но главную роль играют регуляторные механизмы двух типов. Один из них основан на том, что состав окружающей среды влияет на скорость и интенсивность синтеза различных ферментов. Этот механизм, относительно медленно действующий, регулирующий обмен путем индукции и репрессии, описан в гл. 29. Следует обратить внимание, что скорости синтеза и распада регуляторных ферментов чаще всего регулируются гормонами. [c.447]

    Биосинтез белков является объектом генетического контроля. В бактериях, во всяком случае, он проявляется на уровне синтеза информационной РНК посредством взаимодействия особого ( регуляторного ) белка со специфическим участком ДНК (см. часть 22 и разд. 24.2.3). В тканях животных на механизмы, контролирующие уровень ферментов, влияют также ингибиторы синтеза РНК [149]. Детали этих механизмов контроля не важны в контексте данного раздела. Важным моментом является факт, что существуют механизмы регуляции концентрации ферментов на определенном метаболитическом пути посредством конечного продукта этого пути. Так, в бактериальных системах хорошо изучены индуцируемые ферменты. Пока субстраты этих ферментов присутствуют в среде, биосинтеза ферментов не происходит. Часто синтез нескольких ферментов какого-либо одного метаболи-тического пути индуцируется присутствием субстрата первого фермента этого пути. Индукция субстратом, таким образом, представляет собой механизм повышения концентрации системы ферментов по мере появления рабочей необходимости . Соответствующий механизм, понижающий избыточную концентрацию фермента, если последний или система ферментов производит слишком большие количества определенного метаболита, получил название репрессии по принципу обратной связи. Классическим примером этого механизма является ингибирование биосинтеза гистидина в Salmonella typhimurium высокими концентрациями гистидина. Концентрации всех десяти ферментов биосинтетической цепи в ответ на изменение концентрации гистидина изменяются совершенно одинаково [150]. [c.535]

    Повышенные требования информативности по геологическим параметрам предъявляются к объектам воздействия, где планируется применить гидродинамические методы и технологии, рассчитанные на улучшение коэффициентов охвата пласта вытеснением (циклические методы, водогазовая репрессия, изменение потоков, применение микроэмульсий, ультразвуковые и вибрационные воздействия, ядерные подземные взрывы). Применение всех этих методов основано на срабатывании механизма выравнивания фронтов вытеснения в неоднородных по толщине и проницаемости продуктивных пластах, поэтому характер микрофильтрационных процессов, здесь имеет первостепенное значение. Сюда относятся пласты со слоистой, зональной, линзообразной, и любой другой морфологической неоднородностью. Поэтому при выборе и проектировании технологий воздействия или обработки здесь требуется исчерпывающая на дату составления технологической схемы литологическая информация , распространейие коллекторов, коэффициенты расчлененности, гистограммы проницаемости, данные геофизических измерений по интервалам, показатели гидропроводности и гидрофобности и т. д. Все эти элементы литологического строения пластов или участков используются в расчетных схемах, основанных на математических моделях процесса повышения КНО или интенсификации притока. Качество и количество литологической информации (в числовом или графическом выражении) зависит от метода выбора объекта, этапа воздействия и строгости математической модели и расчетной схемы. [c.31]

    Хотя бактерии не растут на нафталине или бифениле, эти соединения стимулируют высвобождение неорганической серы из ДБТ-сульфона. Кроме того, нафталин индуцирует поглощение клетками кислорода при использовании ДБТ-сульфоксида, но не ДБТ-сульфона. Окисление ДБТ-сульфона индуцировалось им самим, а также ДБТ-сульфоксидом. Ацетат и сукцинат подавляли окисление ДБТ-сульфоксида и ДБТ-сульфона по механизму катаболитной репрессии. У мутантов DBTS2, не способных расти на ДБТ-сульфоне, высвобождения серы из данного соединения не наблюдалось, а у мутантов, не способных разлагать бензоат, высвобождение серы происходило с такой же скоростью, как и у родительских штаммов [46]. [c.127]

    Общую теорию регуляции синтеза белка разработали французские ученые, лауреаты Нобелевской премии Ф. Жакоб и Ж. Моно. Сущность этой теории сводится к выключению или включению генов как функционирующих единиц, к возможности или невозможности проявления их способности передавать закодированную в структурных генах ДНК генетическую информацию на синтез специфических белков. Эта теория, доказанная в опытах на бактериях, получила широкое признание, хотя в эукариотических клетках механизмы регуляции синтеза белка, вероятнее всего, являются более сложными (см. далее). У бактерий доказана индукция ферментов (синтез ферментов de novo) при добавлении в питательную среду субстратов этих ферментов. Добавление конечных продуктов реакции, образование которых катализируется этими же ферментами, напротив, вызывает уменьшение количества синтезируемых ферментов. Это последнее явление получило название репрессии синтеза ферментов. Оба явления—индукция и репрессия—взаимосвязаны. [c.535]

    Оператор лактозного оперона располагается сразу за стартовой точкой транскрипции. Долгое время считалось, что присоединение лактозного репрессора к про.мотору стерически мешает присоединению РНК-полимеразы. Однако недавно получены данные, свидетельствующие о том, что репрессор н РНК-полимеразы могут расположиться на промоторе рядом друг с другом. Поэтому приходится ду.мать о более изощренных механизмах репрессии, включающих специфические контакты репрессора с РНК-полимеразой. В лактозном опероне имеется два псевдооператора, сходных по нуклеотидной последовательности с оператором, но обладающих [c.150]

    Репрессия (Repression) Один из двух альтернативных (наряду с индукцией) механизмов регуляции генов. Состоит в подавлении транскрипции или трансляции путем связывания белка-репрессора с оператором. [c.558]

    Исследование возможностей появления предельных циклов и диссипативных пространственных структур в биохимических реакциях представляет несомненный интерес. Осцилляции в жнвых системах возникают на разных уровнях они имеют различные свойства и широкий диапазон частот. Например, осцилляции могут происходить на молекулярном уровне (осцилляции концентраций метаболитов в ферментативных реакциях), на клеточном уровне (тогда они могут быть связаны с механизмами генетической индукции и репрессии, описанными Жакобом, Моно и Гудвином [62]) или на надклеточном уровне (циркадные ритмы). Последние явления имеют большие периоды и, вероятно, не сводятся только к химическим эффектам. [c.240]

    Каждое из множества разнообразных веществ создается в клетке в строго необходимых для роста пропорциях в результате фер-ментативньк реакций. Координация химических превращений, обеспечивающая экономность метаболизма, осуществляется у микроорганизмов тремя основными механизмами регуляцией активности ферментов, в том числе путем ретроингибирования регуляцией объема синтеза ферментов (индукция и репрессия биосинтеза ферментов) катаболитной репрессией. [c.34]

    РИС. 6-15. Некоторые механизмы контроля метаболических реакций. На всех приведенных в книге рисунках модуляция активности фермента аллостерическими эффекторами, а также модуляция активности генов (транскрипция и трансляция) обозначается пунктирными линиями, отходящими от соответствующего метаболита. Линии заканчиваются знаком минус в случае ингибирования идерепрессиии знаком плюс в случае активации и депрессии. Кружки соответствуют прямому действию иа ферменты, а квадратики — репрессии или индукции синтеза ферментов. (Подобная схема представлена в работе [66а].) [c.64]

    Основные механизмы, регулирующие катаболические пути, — индукция синтеза ферментов и катаболитная репрессия. Катаболические пути, в которых функционируют конститутивные ферменты, регулируются большей частью посредством аллостерических воздействий на активность ферментов. Одна из задач катаболических путей — обеспечение клетки энергией. У большинства прокариот возможности генерации энергии намного превышают потребности в ней клетки. Количество АТФ, которое можно синтезировать с помощью имеющихся в клетках аэробных прокариот ферментов гликолитического и дыхательного путей, значительно больше количества АТФ, необходимого для процессов биосинтеза и поддержания жизнедеятельности. Поэтому клетки должны обладать способностью контролировать потребление энергодающих субстратов и, следовательно, выработку клеточной энергии. Основной принцип контроля прост АТФ синтезируется только тогда, когда он необходим. Иными словами, интенсивность энергетических процессов у прокариот регулируется внутриклеточным содержанием АТФ. [c.123]

    Репрессия трансляции под действием двуспиральной РНК. В лизате ретикулоцитов двуцепочечные РНК, включая как двуспиральные фрагменты вирусного происхождения (полиовируса или реовирусов), так и синтетические комплексы поли(А) поли(и) или поли(1) поли(С), вызывают ингибирование синтеза белка в присутствии гемина, похожее по всем признакам на репрессию, вызываемую отсутствием гемина. Двуцепочечная РНК, которая оказывает такое воздействие на трансляцию, должна состоять не менее, чем из 50 пар нуклеотидных остатков. Оказалось, что, так же как и в результате отсутствия гемина, в присутствии такой двуцепочечной РНК происходит активация ингибитора инициации, обозначаемого как dsl, и этот ингибитор тоже является протеинкиназой, фосфорилирующей а-субъединицу eIF-2. В отличие от H I, однако, dsl связан с рибосомными частицами и представляет собой белок с молекулярной массой около 67000 дальтон. Активация ингибитора требует АТФ и происходит как результат автофосфорилирования белка. Именно автофосфорилирование индуцируется взаимодействием белка с двуцепочечной РНК. По-видимому, механизм репрессии инициации под действием активированного dsl во всем аналогичен таковому в случае H I и заключается в изменении взаимодействия eIF-2 в результате его фосфорилирования с дополнительным белком eIF-2B (см. выше). [c.262]

Рис. 236. Структура 1ас-оперона Е. oli и механизмы регу.ляцин его транскрипции репрессии (fi). активации и индукции (л). Рис. 236. Структура 1ас-оперона Е. oli и механизмы регу.ляцин его <a href="/info/103162">транскрипции репрессии</a> (fi). активации и индукции (л).
    Регуляторный механизм репрессии конечным продуктом показан на рис. 22. Из него видно, что ген-регулятор образует апорепрессор, превращающийся в репрессор только после связи с конечным продуктом реакций — корепрессором. Только в таком связанном виде репрессор блокирует ген-оператор и прекращает синтез фермента. [c.48]

    В регуляции катаболизма репрессорами могут быть исходные или промежуточные продукты. При помощи этого механизма регуляции бактерии Е. соИ из двух источников углерода — глюкозы и сорбозы вначале используют легко катаболизируе-мую глюкозу. Этот углевод в данном случае является репрессором ферментов катаболизма сорбозы. После использования глюкозы репрессия заканчивается и новый субстрат — сорбоза индуцирует синтез новых ферментов. Явление, когда культура микроорганизмов использует несколько различных субстратов среды не одновременно, а постепенно один за другим, называют диауксией. [c.48]

    Как это осуществляется Изучение механизма катаболитной репрессии обнаружило, что этот тип регуляции тесно связан с внутриклеточным уровнем циклического АМФ (цАМФ), который в этом процессе функционирует в качестве эффектора. Он образует комплекс с аллостерическим белком — катаболитным активатором, не активным в свободном состоянии. Этот комплекс, присоединившись к определенному участку на промоторе, обеспечивает возможность связывания РНК-полимеразы с промотором и инициацию транскрипции. Количество образующегося комплекса определяется концентрацией цАМФ, которая уменьшается при увеличении содержания глюкозы в среде. Таким образом, глюкоза вызывает изменение внутриклеточной концентрации цАМФ. Это соединение обнаружено в клетках всех прокариот. Его единственная функция — регуляторная. Циклический АМФ образуется из АТФ в реакции, катализируемой аденилатциклазой, связанной с ЦПМ  [c.122]

    В настоящее время считают, что биосинтез целлюлаз многими грибами и, возможно, бактериями контролируется механизмами индукции и катаболитной репрессии. [c.100]

    Механизм репрессии конечным продуктом на уровне транскрипции стал проясняться с 50-х гг. XX в. Большой вклад в это внесли работы Ф. Жакоба и Ж. Моно. Было показано, что наряду со структурными генами, кодирующими синтез ферментов, в бактериальном геноме существуют специальные регуляторные гены. Один из них — ген-регулятор (ген К), функция которого заключается в регуляции процесса транскрипции структурного гена (или генов). Ген-регулятор кодирует синтез специфического аллосте-рического белка-репрессора, имеющего два центра связывания один узнает определенную последовательность нуклеотидов на участке ДНК, называемом оператором (ген О), другой — взаимодействует с эффектором. Ген-оператор расположен рядом со структурным геном (генами) и служит местом связывания репрессора. В отличие от операторных генов гены-регуляторы расположены на некотором расстоянии от структурных генов (продукты регуляторных генов — репрессоры являются свободно диффундирующими белковыми молекулами). [c.119]

    Механизм регуляции синтеза гема в неэритроидных клетках имеет определенные отличия. Так, в клетках печени, где синтез гема происходит на высоком уровне, гем (возможно, после взаимодействия с апорепрессором) является отрицательным регулятором синтеза АЛ-синтазы по механизму репрессии — дерепрессии в процессе [c.416]


Смотреть страницы где упоминается термин Репрессия механизм: [c.177]    [c.205]    [c.36]    [c.243]    [c.472]   
Метаболические пути (1973) -- [ c.64 , c.65 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм индукции—репрессии ферментов



© 2025 chem21.info Реклама на сайте