Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галогенирование термическое

    Основные реакции алканов. Алканы достаточно инертны ко многим химическим реагентам. Их химические свойства излагаются в курсах органической химии. Здесь рассматриваются в основном реакции, использующиеся в нефтепереработке. Наибольший интерес с этой точки зрения представляют реакции окисления, термического и термокаталитического превращения (см. гл. 12 и 13) и галогенирования. [c.173]


    Реакция фотохимического или термического галогенирования (хлорирования или бромирования алканов) протекает, как отмечалось, по механизму радикального замещения (стр. 41). Эта реакция начинается с инициирования цепи. Под влиянием ультрафиолетовых лучей происходит гомолитическое расщепление молекулы хлора  [c.102]

    Предельные углеводороды в обычных условиях химически инертны. Они устойчивы к действию многих реагентов не взаимодействуют с концентрированными серной и азотной кислотами, концентрированными и расплавленными щелочами, сильными окислителями. Химическая устойчивость обусловлена высокой прочностью связи С— Н и ее неполярностью. Для алканов характерны реакции радикального замещения (галогенирование, нитрование), окисления, термического и термокаталитического разложения (крекинг), а также реакции дегидрирования (отщепление водорода) в присутствии катализаторов [85-95]. [c.249]

    Химические свойства. Наиболее характерные для алканов реакции замещения (галогенирование, нитрование, сульфирование) протекают по радикальному механизму (5 ). Для реализации этих реакций требуются достаточно жесткие условия так, образование свободного атома или свободного радикала происходит, например, при термическом расщеплении молекулы одного из исходных веществ. [c.321]

    Реакция галогенирования идет на свету (фотохимическое гало-генирование) или при нагревании [например, термическое хлорирование (300°С), используемое в промышленности]. Как было установлено акад. Н. Н. Семеновым, эта peaкцIrt имеет радикальноцепной характер. На первой стадии этого процесса происходит распад молекулы хлора на два свободных радикала  [c.51]

    По природе активные угли принадлежат к группе графитовых тел. Для их производства используются углесодержащие материалы растительного происхождения, ископаемые каменные угли, каменноугольные полукоксы и др. Существуют два основных способа получения активных углей парогазовый метод активирования (процесс частичного выжигания углеродистых соединений из угля-сырца и окисления самого углерода за счет кислорода воздуха, пара и углекислого газа) и активирование углей неорганическими добавками (термическое разложение органического материала угля-сырца в присутствии неорганических добавок). В зависимости от способа и условий получения активные угли могут резко отличаться природой поверхности, которая в свою очередь может меняться при хранении в присутствии кислорода воздуха и воды. Активный уголь обладает каталитической активностью в ряде химических реакций окисления, галогенирования, дегидрохлорирования, дегидратации, полимеризации и др. [c.390]


    Возможны и практически используются следующие два вида деструкции 1) под влиянием физических агентов — термическая, механическая, фотохимическая, электрическая 2) под действием химических реагентов — гидролиз, формолиз, ацидолиз, аминолиз, алкоголиз, окисление, галогенирование, гидрогенолиз и др. Ниже рассмотрены важнейшие методы исследования твердого топлива. [c.7]

    Галогенирование можно проводить без катализаторов (присоединение, замещение, термическое галогенирование), но предпочтительно вести процесс в присутствии катализаторов—переносчиков галогена. Ниже рассматриваются вопросы каталитического галоге- [c.760]

    Время жизни свободных радикалов алифатического ряда очень небольшое. Например, полупериод существования радикала метила СНз- равен 0,006 с (сравните время жизни атомарного водорода составляет 0,1 с). Однако именно свободные алифатические радикалы с малым временем жизни имеют наибольшее значение. С участием таких радикалов протекают реакции галогенирования, нитрования, сульфохлорирования предельных углеводородов, а также процессы горения, термического разложения (пиролиза), взрыва полимеризации, деструкции и т. д. Многие реакции, идущие в живом организме, также осуществляются, по-видимому, при участии свободных радикалов. [c.29]

    Галогенирование. Реакция галогенирования алкаиов относится к радикально-цепным. Различают термическое, фотохимическое и инициированное галогенирование. Возбужденный свободный атом галогена способен замещать атом водорода в н-алкане. [c.184]

    Химические свойства. Для алканов характерны реакции радикального замеш,ения (галогенирование, нитрование), окисления (кислород является бирадикалом), термического и термокаталитического разложения (крекинг), а также реакции дегидрирования (отщепление водорода) в присутствии катализаторов. [c.245]

    Галогенированные углеводороды плохо растворяются в воде, но хорошо смешиваются со многими жидкими органическими веществами. Реакционная способность и склонность к термическому разложению галогенированных углеводородов зависит от галогенов, замещающих водород они понижаются в ряду иод — бром — хлор — фтор. [c.67]

    Хорошие диэлектрические свойства галогенированных углеводородов позволяют применять их для тушения пожаров оборудования под напряжением. Эти вещества обладают также хорошей смачивающей способностью и могут, в отличие от двуокиси углерода, успешно использоваться для тушения пожаров тлеющих материалов. Однако наряду с положительными качествами они имеют и ряд недостатков оказывают токсическое воздействие на человека, причем, если сами галогенированные углеводороды действуют на организм человека, как слабые наркотические яды, то продукты их термического распада обладают сравнительно высокой токсичностью. Однако временное пребывание работающих в такой среде не является опасным для состояния здоровья. [c.67]

    Другие реакции хинальдина и лепидина. Атомы водорода метильных групп лепидина и хинальдина могут быть легко замещены на бром или хлор. Прямое галогенирование хинальдина приводит к образованию пергалогено-производного, которое при термическом разложении отщепляет галогеноводород и при этом с небольшим выходом получается галогенопроизводное с галогеном в боковой цепи. При проведении галогенирования в растворе уксусной кислоты в присутствии ацетата натрия, который служит для связывания галогеноводородной кислоты, Хэммик [321] получил из хинальдина а-трибром-метилхинолин с количественным выходом и а-трихлорметилхинолин с почти количественным выходом. При гидролизе трибром- или трихлорметилхиноли-нов образуется хинальдиновая кислота с количественным выходом. Остановить реакцию на промежуточной стадии" галогенирования невозможно. [c.80]

    При термическом галогенировании, обычно протекающем в газовой фазе, расщепление молекулы хлора достигается при достаточно высокой тем ператур-е с одновременным участием стенки сосуда или насадки  [c.135]

    Реакция галогенирования идет на свету (фотохимическое галогенирование) или при нагревании (например, термическое хлорирование при 300°С, используемое в промышленности). Как было установлено акад. Н. Н. Семеновым, эта реакция носит радикально- [c.49]

    По-видимому, наиболее перспективным для использования в технике является галогенирование углей трехфтористым хлором. В результате действия на уголь IF3 образуются высокогалогени-рованные масла, перегоняющиеся в широком интервале температур. Они прозрачны, но слегка окрашены, характеризуются высокой химической и термической стойкостью. Наилучшими свойствами обладают масла, в состав которых входит около 50% углерода и 19% фтора. Их можно применять в качестве взрывобезопасных жидкостей, жидкого теплоносителя при температурах выше 200 °С, смазки для клапанов двигателей внутреннего сгорания с большим к. п. д. и электротехнических масел [9, с. 158]. [c.143]

    Значительный интерес представляют некоторые металлорганические соединения, диссоциирующие при галогенировании на металл и свободные радикалы. Показано [11], что добавки 0,002% тетраэтилсвинца способствуют хлорированию низших парафинов. Например, этан с хлором реагирует при этом на 95% уже при 130— 135°, т. е. на 150° ниже, чем в случае обычного термического хлорирования. В результате образуется смесь, содержащая 80% хлористого этила и 20% дихлорэтана. Пропан в этих же условиях образует 33% хлористого изопропила, 45 9о хлористого пропила и 24 о смеси днхлорпропанов. [c.764]


    Таким образом, можно предположить, что галогенирование высокомолекулярных соединений протекает через стадию образования молекулами полиазина и галогена термически нестабильных донорно-акцепторных комплексов л-а-типа, гемолитический распад которых инициирует цепной радикальный процесс [10]. В этих условиях галогенируется любой иной субстрат, натример полимер, не способный вызывать гомолитический распад молекул галогена, но способный галогенироваться по цепному радикальному механизму по схеме, приведенной на с. 47. [c.50]

    Образующийся олигомер или полимер молекулярной массы около 1000 для повышения термической стабильности выдерживают в течение 0,5...2 ч при температуре 190...350 С в атмосфере аргона, азота, гелия, неона или ксенона и затем алкилируют или нейтрализуют при температуре 25...250 °С соответственно насыщенными или ненасыщенными циклическими или ациклическими галогенированными или полигалогенированными алкилами С12-С36 или моно- или поликарбоновыми кислотами j2-С36 на основе таллового масла. [c.337]

    Реакции Sr. Важнейшими из реакций свободнорадикапьного замещения атома водорода в алканах и их замещенных являются реакции галогенирования — фторирования, хлорирования и бромирования. Наиболее подробно изучен механизм реакции хлорирования. Хлорирование алканов может протекать или как фотохимическое (при облучении УФ-светом), или как термическое превращение  [c.200]

    Токсическое действие. Общерезорбтивное действие может быть результатом проникновения в организм паров или аэрозоля конденсации расплавленных веществ либо веществ, образующихся при их термической деструкции. Возможна резорбция через кожные покровы. По сравнению с другими группами галогенированных ароматических соединений хлорнафталины менее токсичны. Токсичность возрастает с увеличением количества атомов хлора в молекуле. Изомеры несимметричной структуры при одинаковом количестве атомов хлора обладают большей биологической активностью. При длительном поступлении в организм характерным является поражение печени, токсический гепатит, гепато-холецистит, иногда желтая острая атрофия печени. Нарушается функция почек, поджелудочной железы. В механизме действия играет роль выраженная индукция цитохрома Р-450. Типичным является поражение сально-железистого и фолликулярного аппарата кожи с явлениями фотосенсибилизации. Под влиянием солнечной радиации на фоне вызванной этими веществами эритемы кожных покровов развивается резкий зуд, покраснение и отек различных их участков, которые могут располагаться вдали от места первичного поражения. Поражение кожи связывают с выделением [c.579]

    Технология получения 1,2-дихлорэтана оксихлорированием этилена относится к одностадийным по химической составляющей процесса и непрерывной. Используется дешевое и доступное сырье. Важной особенностью этого процесса является то, что в качестве галогенирующего агента применяется хлороводород, который получается при термическом пиролизе 1,2-дихлорэтана. Процесс имеет достаточно высокую эффективность, хотя и уступает по показателям галогенированию этилена. Высокие конверсии реагентов за один проход позволяют организовать технологию без рециркуляции по компонентам и потокам. В полной мере в технологии реализован принцип полноты выделения продуктов из реакционной смеси. В первую очередь это связано с высокими требованиями к чистоте [c.510]

    Галогенирование. Процессы галогенирования алканов принадлежат к радикально-цепным реакциям. Различают термическое, фотохимическое и инициированное галогенирование. Возбужденный свободный атом гaJ oreнa способен замещать атом водорода в нормальном алкане. [c.31]

    Новые закономерности галогенирования углеводородов открыты при изучении термического хлорирования углеводородов С5 —Сц. Как установили Некрасова, Шуйкин, Галанина и Некрасов [368—373], прежде всего здесь имеется резкое различие в механизмах реакций при высоких и низких температурах. В 1953 г. Некрасова [368] нашла, что оптимальными условиями дрлучения монохлоридов и алканов Сб — Сю являются отношение алкан хлор-10 1 и температура для Се 77° С, для 7 137° С, для Се 177°, Сэ 187°С и для Сю 197°С. При этом получаются с [c.372]

    Эти огнетушащие составы можно применять для тушения твердых, жидких и газообразных горючих веществ (кроме щелочных металлов, металлоорганических соединений и др.). Особенно эффективно их применение при тушении горящих веществ в закрытых объемах. Указанные огнетушащие составы используют в химической промышленности как в стационадных си--гтемах, так и в передвижных и ручных огнетушителях. При работе с этими средствами пожаротушения необходимо помнить, что продукты термического разложения галогенированных углеводородов токсичны. [c.201]

    Часто наблюдаемое наличие индукционного периода или трудно воспроизводимый положителыный катализ в случае присоединения галогенов к олефинам в неионизирующих растворителях указывает, повидимому, на то, что ряд реакций термического галогенирования также идет по атомному механизму. К реакциям этого типа относится, например, присоединение брома к фенантрену и его производным . [c.196]

    Реакцию можно индуцировать светом, инициаторами или термически. Литературные данные о результатах таких реакций бромирования противоречивы и еще не вполне понятны. Согласно одной из новых гипотез, радикальное галогенирование N-бромсукцинимидом должно быть возможно только в том случае, если последний присутствует в твердой форме, например если проводить реакцию в четыреххлористом углероде, в котором N-бромсукцинимид практически нерастворим. Тогда реакция происходит на поверхности его кристаллов, причем гладко реагируют только такие субстраты, которые имеют молекулярные размеры, сравнимые с системой 0 = С—N. Это имеет место, в частности, в случае аллильной системы [см. табл. 86], которая поэтому молсет хорощо располол иться на поверхности кристаллов. Тогда в комплексе энергия активации снижена па величину энергии взаимодействия. С увеличением разветвленности аллильного положения укладка на поверхности бромсукцин-имида и вместе с этим галогенирование затрудняются. В общем реакционная способность аллильного положения снижается в [c.535]

    Элементы галогеноводородов отщепляются также при действии на галогенонитроалканы небольшого избытка органических веществ. основного характера (ацетата натрия, диметиланилина, пиридина, триэтиламина и др.). Нитроалкены при этом получаются с более высоким выходом, чем при термическом дегидро-галогенировании. Наилучшие результаты достигаются в случае ацетата натрия его замена диметиланилином снижает выход, применение пиридина осложняет выделение нитроалкенов перегонкой в вакууме, либо кристаллизацией (табл. 2). [c.83]

    Масс-спектроскопический анализ продуктов, полученных при взаимодействии диборана с Й2р4, указывает на образование фторированных боразинов [49], хотя не было выделено каких-либо определенных индивидуальных продуктов. Диборан спокойно реагирует с галогенированными алкиламинами при этом образуются продукты присоединения, которые при термическом разложении дают соответствующие боразины [50] Эта реакция использована для получения М-фторалкилборазинов [c.143]

    По реакциям галогенирования обычно получаются смеси нескольких изомеров. По растворимости и ряду других свойств соли галогензамещенных ионов ВшН о и Bi2Hi2 сходны с солями незамещенных ионов. Соли галогенированных ионов отличаются высокой термической и химической стойкостью. Так, СзгВюСЬо при нагревании в вакууме до 600° С теряет лишь 4% веса, а S2B12 I12 еще более стоек потеря в весе при 700° С равна 3%. [c.341]


Смотреть страницы где упоминается термин Галогенирование термическое: [c.119]    [c.98]    [c.1666]    [c.415]    [c.286]    [c.159]    [c.59]    [c.59]    [c.80]    [c.283]    [c.190]    [c.136]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.135 ]




ПОИСК







© 2025 chem21.info Реклама на сайте