Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Величина поверхности при высокой температуре определение по адсорбции при низкой

    Когда величина поверхности исследуемого тела составляет уже квадратные сантиметры, а не метры па грамм, то применение азота при температурах жидкого воздуха в качестве адсорбата для получения изотермы БЭТ становится бесполезным, если для измерения величины адсорбции используется объемный метод. Значение р для азота нри этих температурах лежит вблизи 760 мм рт. ст. Для того чтобы достичь значений р ра, которые требуются в этом случае для выполнения теории БЭТ, необходимо проводить адсорбцию при относительно высоких значениях давлений азота. В таких условиях, даже если мертвый объем установки сведен к минимуму, измерение адсорбции становится или невозможным, или весьма затруднительным (в то н<е время с помощью весового метода обычно молено проводить измерения адсорбции при любых необходимых значениях р ро). Так как объемный метод является более удобным и распространенным методом измерения адсорбции, было сделано множество попыток определить емкость монослоя твердых тел с малыми величинами поверхности, используя такие адсорбаты, давления насыщенных паров которых были бы достаточно малы последнее необходимо для того, чтобы можно было достичь значений р ро, пригодных при работе с обычными объемными установками. Для определения малых поверхностей широко использовался криптон [113—119] значение ра для него составляет 2,0 мм рт. ст. при —195,8°. Однако за последнее время было выдвинуто много аргументов в пользу применения ксенона вместо криптона [120—124]. Преимущество использования ксенона по сравнению с криптоном заключается в том, что ксенон имеет более высокую теплоту адсорбции, а значение ра для него ниже. Высокое значение теплоты адсорбции приводит к более высоким величинам с, а это означает, что на изотермах адсорбции точка В может появиться уже при относительном давлении 0,01 или даже ниже [124]. Более низкое значение р означает, что при использовании объемного метода поправки на мертвый объем для ксенона меньше, чем для криптона. [c.81]


    Отдельные классы сложных молекул, в частности, углеводороды, состоят только из немногих фрагментов, которые удобно принять за силовые центры межмолекулярного взаимодействия. Молекулы одного класса различаются числом этих силовых центров, их химическим (валентным) состоянием и их пространственным расположением. Используя экспериментальные адсорбционные данные для сравнительно немногих молекул, в принципе, можно определять потенциалы Ф межмолекулярного взаимодействия для всех интересующих нас пар силовых центров. Полученные так потенциалы ф далее могут быть использованы для определения потенциальных функций Ф взаимодействия любых других молекул, состоящих из тех же силовых центров. Поэтому таким путем можно произвести расчет адсорбционных свойств для таких систем, для которых нет экспериментальных данных, или таких характеристик адсорбции, измерения которых представляют большие трудности (сюда относятся, например, теплоемкость адсорбированных молекул при нулевом и низких заполнениях поверхности, величины адсорбции и равновесного давления при слишком высоких или слишком низких температурах для непосредственного измерения, а также медленно выделяющиеся теплоты адсорбции). [c.244]

    При полном насыщении поверхности адсорбента количество адсорбированного на поверхности вещества, по-видимому, определяется его мольным объемом. При адсорбции на углях наибольшее значение, вероятно, имеет давление паров, хотя, если летучести двух адсорбатов близки, то в действие вступает фактор ненасыщен-ности. В случае силикагеля ненасыщенность играет важную роль в повышении адсорбционной способности. Уравнения Лэнгмюра, Фрейндлиха и Брунауэра—Эмметта—Теллера описывают адсорбцию только в определенном интервале давлений. Хорошие результаты дает метод корреляции, основанный на теории адсорбционных потенциалов Поляни [3] с его помощью удалось описать 18 изотерм адсорбции на трех различных адсорбентах при 25 °С в интервале давлений 0,2—20 атм. Адсорбция насыщенных и ненасыщенных углеводородов на силикагеле и иа угле при низкой температуре описывается различными корреляционными кривыми. Предложенный метод позволяет также скоррелировать температурные зависимости изотерм адсорбции вплоть до температуры 200°С. Используя такой метод корреляции, авторы на основании минимума экспериментальных данных смогли рассчитать величины адсорбции при низких и высоких давлениях и различных температурах, а также предсказать характер изотерм адсорбции различных углеводородов на этих адсорбентах. [c.143]


    Использование в качестве спектрального зонда иона трифенилкарбония, как можно показать [82], позволяет выявить механизм А-1 и исключить А-2 и В из дальнейшего рассмотрения. Нужно отметить, что если предварительная адсорбция олефина является необходимой предпосылкой адсорбции парафина, то ионы карбония не могут образоваться из молекул парафинов в системе, полностью освобожденной от олефина или олефинообразующих примесей. Поскольку сам трифенилметан определенно не может быть предшественником олефина, остается только два возможных источника олефиновых примесей, которые следует учитывать а именно поверхность катализатора и используемые реагенты. Первый из этих источников не принимается в расчет, поскольку весьма маловероятно, чтобы либо сами олефины, либо ионы карбония, адсорбированные на поверхности, выдержали используемую предварительную тренировку исчерпывающим окислением при 500° и откачиванием. Кроме того, так как была использована цельнопаянная стеклянная система без смазки и так как единственным присутствующим реагентом был сам трифенилметан, любой такой олефин должен был бы образоваться из примесей в этом реагенте, который был подвергнут жесткой очистке, и, как показано, имел общий уровень примесей ниже предела обнаружения. Для того чтобы исключить механизм В из дальнейшего рассмотрения, необходимо только показать, что в любом данном опыте образовалось больше ионов карбония, чем могло бы получиться в расчете на максимальное возможное количество олефиновых примесей. В опыте, результаты которого представлены на рис. 32, 1,8-10 г тщательно очищенного трифенилметана было нанесено в вакууме на образец катализатора, предварительно полностью освобожденного от адсорбированных олефинов или ионов карбония окислением и откачкой при 500°. При комнатной температуре поглощение возрастало весьма медленно в течение 740 час, однако после первых 170 час не наблюдалось существенного изменения. Хемосорбция общего количества трифенилметана соответствовала бы максимальному заполнению 5-10 ионов трифенилкарбония на 1 см имеющейся поверхности. Использование этой величины в качестве верхнего предела хемосорбированного количества требовало бы, чтобы реагент содержал примесей порядка 50 мол.%. В отдельном опыте с применением десятикратного избытка реагента и определением хемосорбированного количества методом экстракции был установлен более низкий предел необходимого количества примесей (15%). Обе эти величины чрезмерно высоки для использованного реагента. [c.71]

    Любарский с сотрудниками [304] считает, что имеющиеся в литературе противоречия относительно активности медноникелевых сплавов различного состава связаны, по-видимому, с условиями проведения опытов при работе в протоке, очевидно, не всегда соблюдалась изотермичность, отсутствовали диффузионные торможения величины поверхностей, энергии активации часто определялись неточно. С целью проверки справедливости взглядов Даудена авторами [304] была проведена работа по определению зависимости каталитической активности медноникелевых сплавов в реакции гидрирования бензола от их состава. Процесс проводился в условиях, исключающих все перечисленные выше недостатки использовался проточноциркуляционный метод определения активности, обеспечивающий изотермичность процесса реакция протекала в кинетическом режиме удельная поверхность определялась по низкотемпературной адсорбции криптона при низких давлениях, что обеспечивало высокую точность получаемых величин энергии активации рассчитывались при степенях превращения бензола, не превышающих 50—60%, при которых реакция протекает по нулевому порядку относительно бензола. Сплавы готовились совместным осаждением карбонатов никеля и меди с последующим восстановлением до металлов при оптимальной температуре 250° С. Таким путем были получены твердые растворы различного состава с достаточно развитой поверхностью. Опыты проводились при температурах 110—170° С. [c.100]

    Схематическое изображение простой статической установки БЭТ приведено на рис. 4. Существенными частями установки являются адсорбционная ампула, в которой находится исследуемый образец, сосуд Дьюара для термостатирования образца при температуре жидкого азота, манометр для определения давления адсорбата, газовая бюретка, устройство для введения в систему дозированного объема инертного газа, обычно азота, и вакуумная система. Для соединения отдельных частей системы по возможности используются капиллярные трубки с тем, чтобы свести объем газа до минимума. Дополнительные устройства, не показанные на схеме, включают оборудование для предварительной обработки образца и баллон с гелием, используемым при калибровке. Для удаления поверхностных загрязнений и газов проводят предварительную обработку образца, обычно путем нагревания в вакууме. Предварительную обработку часто производят непосредственно в адсорбционной ампуле, при этом сосуд Дьюара просто заменяют нагревателем. Адсорбционная система (рис. 5), разработанная Эмметом [6], не пригодна для образцов с малой поверхностью (менее 5 м ). В действительности нижним пределом удельной поверхности служит величина 1 м г 1. Однако для того, чтобы снять хороший график БЭТ, в случае адсорбции азота необходимо иметь по крайней мере 5 м поверхности [81]. Для определения малых поверхностей твердых тел необходимо оборудование работающее при низких давлениях или обладающее высокой точностью. Эти специальные системы описаны Россом и Оливье. Техника изготовления стеклянных адсорбционных установок БЭТ описана Джойнером [7] и Файтом и Уилингамом [11], Схема подобной установки приведена на рис. 6. Для определения поверхности электродов Залкинд, Каннинг и Блок [ 8] использовали шестипозиционную установку БЭТ, изображенную на рис. 7. [c.311]


    Точность измерения адсорбции зависит от точности определения мертвого пространства. Последнее в свою очередь зависит от того, в какой степени адсорбируется газ, применяемый для калибрирования. Адсорбция гелия на угле была измерена Гомфрей [ ]. По ее данным, 1 г угля адсорбирует, при температуре —190° и при давлении 704 мм, 1,82 см гелия. Тейлор и Хо-уард [ ] нашли, что на геле из окиси хрома гелий адсорбируется в количестве 0,27 см /г при —191° и при давлении 760 мм. При этой величине адсорбции всего лишь 0,5% всей поверхности оказывается покрытой гелием. При температуре —78° адсорбция гелия на обоих этих адсорбентах енде может быть измерена, а при 0° она равна нулю. Вследствие этого можно считать, что если измерять мертвое пространство при помощи гелия, при температуре, близкой к 0°, то ошибка измерения, обусловленная адсорбцией гелия, будет исчезающе мала. В большинстве приборов для измерения адсорбции одна часть мертвого пространства находится при комнатной температуре, а другая его часть — при температуре термостата, поэтому необходимо определять объем мертвого пространства по крайней мере при двух различных температурах, чтобы получить отдельно объемы обеих частей. При этих измерениях следует избегать не только слишком низких, но и слишком высоких температур, так как при высоких температурах некоторая ошибка может быть внесена за счет растворимости гелия в стекле [ ], [c.54]

    Из рис. 1-41 видно, что для н-алканов, молекулы которых взаимодействуют друг с другом только неспецифически, определения статическими и газохроматографическими методами дают близкие величины. Эти величины близки также и к теоретически вычисленным для адсорбции отдельных молекул величинам—Ф . В случае же спиртов, т. е. молекул группы В, способных специфически взаимодействовать друг с другом, только газохроматографические определения теплот адсорбции при очень малых заполнениях и повышенных температурах дали величины qstl, близкие к величинам Фд, вычисленным для адсорбции отдельных молекул. Калориметрические же определения и определения из изостер, проведенные при значительно больших заполнениях поверхности, а также при более низких температурах (около 20 °С) дали значительно более высокие значения qst. Эти значения включают не только вклад энергии неспецифического взаимодействия адсорбат—адсорбент, но и вклад энергии специфического взаимодействия адсорбат—адсорбат, т. е. энергию взаимной ассоциации молекул спиртов с образованием между ними водородной связи. Действительно, из рис. 1-41 видно, что разница результатов калориметрических и газохроматографических определений составляет в этом случае около 5 ккал аюл, т. е. энергию водородной связи между адсорбированными молекулами спиртов. [c.71]

    Наиболее изящный метод определения величины частиц коллоидных систем заключается в использовании дифракции рентгеновских лучей, падающих под малыми углами, и в переносе на силикаты методов исследования целлюлозы . Эта теория несколько отличается при применении ее к системам с плотно упакованными частицами, имеющими лишь малые межчастичные свободные пространства, и к разбавленным коллоидным золям . Шал, Элкин и Росс показали, что такой метод можно применять к кремнезему или к смесям гелей кремнезема и глинозема для определения их пористости, что важно как мера адсорбции газа при низкой температуре (см. С. I, 7 и ниже) и для явлений капиллярной конденсации (см. А. III, 155 и ниже). Эта особая область применения методов дифракции рентгеновских лучей до сих пор интенсивно развивается, и в ней заложены перспективы для решения проблем, связанных с изучением силикатов, особенно систем вода — глина и подобных материалов, обладающих высокой активной поверхностью. Для практического применения метода малых углов прибор с двумя кристаллами, описанный Фаикухеном и Еллине-ком2, может оказаться особенно полезным он имеет две отражающие кальцитовые пластинки на пути для резко сфокусированного главного рентгеновского луча. Эти авторы изучали у-глинозем, нагретый при различных тем- [c.273]

    Специфика измерений высоковакуумными манометрами. Обычно измерения глубины вакуума в области низких давлений проводятся с целью определения плотности потока молекул, падающих на определенную поверхность внутри вакуумной системы. Интересующий нас объект может быть тонкой пленкой, подложкой или каким-либо прибором. Обычно предполагается, что измеряемое манометром давление газа соответствует условиям, одинаковым для всех точек данной вакуумной камеры. Это предположение, однако, является всего лишь аппроксимацией, поскольку в области очень низких давлений поведение газа определяется в основном взаимодействием молекул газа со стенками камеры, а не между собой. Следовательно, распределения самих частиц и их скоростей не являются однородными и отличаются от максвелловских. Для ионизационных манометров характерен еще ряд ограничений в измерении давления газа и большая часть источников ограничений не может быть устранена. Для уменьшения величины этих эффектов и оценки точности измерения в области малых давлений необходимо разобраться в механизмах, ответственных за эти эффекты. Проблема неоднородности распределения газа в вакуумных системах рассматривалась Муром [357]. Он перечислил причины, которые могут приводить к изменению плотности газа. Причиной могут быть насосы, действующие как ловушки и как источники направленного распространения газовых частиц. Эффект может быть связан с неупругим отражением падающих на стенку молекул, с поверхностной миграцией адсорбированных газов, вариацией скоростей адсорбции и десорбции на определенных участках внутренних стенок. Изменение плотности газа может быть вызвано разницей в температурах элементов системы. Хотя попытки описать аналитически реальное распределение газа и были сделаны, однако они были выполнены для систем с простейшей геометрией. Экспериментальные исследования в этом направлении были проведены Холлэндом, который рассматривал общее давление газа как сумму максвелловской и направленной составляющих [358]. Он закрепил ионизационную манометрическую лампу так, что ее впускная трубка могла поворачиваться, и наблюдал значительную разницу в давлении при различных ориентациях, измерительной лампы. Поскольку все источники неравномерного распределения давления газа устранить невозможно, при установке ионизационной лампы в вакуумную систему необходимо принимать во внимание хотя бы наиболее важные из них. Если манометрический датчик обращен в сторону насоса, криогенной панели или активно обезгаживаемой поверхности, такой, например, как нагреваемый элемент, то он, по-видимому, будет показывать давление, соответствующее либо более низкой, либо более высокой плотности частиц по сравнению с атмосферой, окружающей подложку. Для получения более близкого к реальному значения давления необходимо соединительную трубку манометрического датчика направить в обратную сторону или вбок таким образом, чтобы эффекты направленности потоков были близки к тем, которые имеют место у подложки. Опасность неправильного показания давления больше в системах с мощными насосами из-за высоких скоростей десорбции. В этих условиях можно ожидать преобладания направленной составляющей давления, которое вряд ли будет правильно измерено с помощью манометра. [c.330]


Смотреть страницы где упоминается термин Величина поверхности при высокой температуре определение по адсорбции при низкой: [c.96]    [c.34]   
Гетерогенный катализ (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция определение

Адсорбция при высоких температурах

Адсорбция при низких температурах

Определение поверхности

Температура определение

Температуры высокие



© 2024 chem21.info Реклама на сайте