Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты ассоциация молекул

    Следует отметить, что карбоновые кислоты по сравнению, например, со спиртами (с тем же числом углеродных атомов) имеют довольно высокие температуры кипения и плавления. Это можно объяснить значительной ассоциацией молекул кислот за счет более прочных, чем в спиртах, водородных связей (связь О—Н в кислотах более поляризована), которые образуются при взаимодействии [c.142]


    Большое влияние на растворяющую способность оказывает водородная спязь, которая образуется под влиянием электростатического притяжения протона одной молекулы к аниону или электроотрицательному атому (например, фтора, кислорода, азота, хлора) другой молекулы. Наличие водородной связи приводит к ассоциации молекул, например для метилового спирта  [c.87]

    Водородная связь возникает между молекулами органических соединений, содержащих группы —ОН и —NH2. Примерами могут служить спирты и карбоновые кислоты. Ассоциация молекул за счет водородных связей приводит к тому, что спирты н карбоновые кислоты имеют более высокие температуры кипения, чем соответствующие им альдегиды, между молекулами которых водородные связи не образуются. Наличием водородных связей объясняется образование димеров муравьиной и уксусной кислот в парах [c.130]

    Теплота адсорбции метанола в первом случае из-за образования водородных связей с кислородными комплексами на поверхности сажи велика. Благодаря кислотному характеру этих комплексов теплота адсорбции метанола вначале выше теплоты его конденсации и, постепенно уменьш аясь с ростом заполнения поверхности, приближается к теплоте конденсации сверху. Такая зависимость теплоты адсорбции от заполнения поверхности типична для неоднородной поверхности. В отличие от этого на ГТС, не содержа щей кислородных поверхностных соединений, теплота адсорбции метанола гораздо меньше теплоты конденсации и при увеличении заполнения поверхности постепенно возрастает вследствие ассоциации молекул спирта с образованием межмолекулярных водородных связей адсорбат — адсорбат и приближается к теплоте конденсации снизу. [c.16]

    Ассоциация молекул и структура жидкостей. Молекулы таких жиД Хостей, как НР, вода и спирты, могут при образовании водородных связей выступать как акцепторы и доноры электронного заряда одновременно. В результате этого образуются димеры (НР)2, (НзО) , (СНзОН)2 и т. д. Однако ассоциация на этом не останавливается, образуются тримеры, тетрамеры и т. д., пока тепловое движение не разрушает образовавшеюся кольца и]ш цепочки молекул. Энергия на одну водородную связь в таких цепочках возрастает с числом молекул в димере воды 26,4, в тримере 28,4 кДж/моль, Для фтористого водорода в цепочках (НР)2, (НР)з, (НР)4 и (НР)5 и в кольце (НР)б на одну водородную связь приходится 28,9 32,5, 34,6 36,9 и 39,5 кДж/моль соответственно [к-32]. Когда тепловое движение понижено (в кристалле), через водородные связи создается кристал тическая структура. Известная аномалия плотности воды и льда обусловлена водородными связями в кристаллах льда каждая молекула воды связана с четырьмя соседями водородными связями через две неподеленные пары атома кислорода молекула образует две донорные Н-связи и через два атома Н — две акцепторные. Эти четыре связи направлены к вершинам тетраэдра. Образующаяся гексагональная решетка льда благодаря этому не плотная, а рыхлая, в ней большой объем пустот. При плавлении порядок, существующий в кристалле (дальний порядок), нарушается, часть молекул заполняет пустоты и плотность жидкости оказывается выше плотности кристалла. Но в жидкости частично сохраняется льдообразная структура вокруг каждой молекулы (б.иижний порядок). Эта структура воды определяет многие свойства воды и растворов. Структурированы и спирты, но по-иному, так как молекула спирта образует одну донорную и одну акцепторную связь. Эта структура разрушается тепловым движением значительно легче. Возможно структурирование и смещанных растворителей, как водно-спиртовые смеси и др. Оказывая особое влияние на структуру воды, водородные связи налагают отпечаток на всю термодинамику водных растворов, делая воду уникальным по свойствам растворителем. [c.274]


    Водородная связь оказывает большое влияние на физические свойства спиртов. Именно легкостью осуществления ассоциации молекулами первичных спиртов и спиртов нормального строения объясняется их высокая температура кипения. [c.107]

    Ассоциация молекул в водной фазе вызывает уменьшение коэффициента распределения при увеличении концентрации металла, ассоциация же в органической фазе—увеличение этого коэффициента. Комплексы металла, имеющего хорошо ассоциирующие частицы, отличаются очень слабой растворимостью в воде, большой—в неполярных растворителях (бензол, четыреххлористый углерод, хлороформ и метилизобутилкетон) и слабой в полярных (спирты, эфиры). Металлы со слабо ассоциированными молекулами особенно хорошо экстрагируются кетонами, простыми и сложными эфирами и другими растворителями типа доноров при добавлении кислот. В таких системах коэффициент распределения увеличивается с повышением количества свободной кислоты, а в некоторых системах имеет максимум при известных ее концентрациях, так как при низких концентрациях из частиц кислоты и экстрагируемого вещества образуется мало комплексов, а при высоких концентрациях количество комплексов сильно увеличивается. Нов некоторых системах при определенной кислотности одновременно начинает расти взаимная растворимость фаз, что может ухудшить коэффициент распределения. [c.425]

    Водородная связь объясняет аномально высокие температуры кипения и плавления ряда веществ, аномальную диэлектрическую проницаемость и не соответствующую строению молекул растворимость. Так, способность спиртов, аминов, карбоновых кислот растворяться в значительной степени обусловлена наличием водородной связи. Эта же связь приводит к ассоциации молекул. На , пример, при ассоциации молекул спирта образуются димеры, три-меры и т. д.  [c.45]

    Конечно, если в качестве растворителей используются органические кислоты и спирты, то можно предполагать, что при относительно низких температурах возможна ассоциация молекул растворителя вследствие образования водородных связей. Это может служить причиной плохой растворяющей способности низкомолекулярных кислот и спиртов. Известно, что с повышением молекулярного веса спиртов и кислот способность их к ассоциации понижается. [c.169]

    В предыдущем параграфе рассмотрены двухкомпонентные лиофильные коллоидные системы — дисперсии мицеллообразующих ПАВ. Введение в систему третьего компонента, в зависимости от его природы, может либо затруднять мицеллообразование, либо (что наблюдается чаще) способствовать этому процессу. Подавление ассоциации молекул ПАВ в мицеллы происходит при введении в водный раствор ПАВ значительных количеств полярных органических веществ, например низших спиртов. Такие вещества увеличивают молекулярную растворимость ПАВ и вследствие этого затрудняют мицеллообразование. Введение этих же веществ, но в малых количествах, и особенно добавление неполярных углеводородов приводит к некоторому понижению ККМ, т. е. облегчает мицеллообразование. При этом существенно изменяется строение мицелл введенный в качестве добавки третий компонент входит в состав мицеллы. В результате практически нерастворимые в чистой воде углеводороды растворяются в мицеллярных дисперсиях ПАВ. Это явление — включение в состав мицелл третьего компонента, нерастворимого или слабо растворимого в дисперсионной среде, называется солюбилизацией. Различают прямую солюбилизацию (в водных дисперсиях ПАВ) и обратную (в углеводородных системах). [c.232]

    Водородная связь между атомами А и В двух различных молекул — межмолекулярная водородная связь — приводит к ассоциации молекул, проявляется в аномально высоких температурах кипения, плавления и других свойствах образовавшихся веществ. Из примеров таких соединений приведем схемы (НгО)п, (НР) , (К Н.ч)п, карбоновых кислот и спиртов  [c.127]

    Такое резкое повышение температуры обусловлено значительной ассоциацией молекул спиртов. [c.329]

    В. Захариасен, используя полученную Г. Стюартом и Р. Морроу кривую интенсивности для метилового спирта, рассчитал функцию распределения атомов. На основании ее анализа он нашел межатомное расстояние С—О и О—Н. .. О соседних молекул, равное соответственно 1,4 и 2,6 А построил модель ассоциации молекул метилового спирта, согласно которой каждая молекула СН3ОН посредством водородных связей координирована с двумя соседними (см. рис. 9.8). Аналогичные результаты были получены в работе Г. Гарвея, который применил метод интегрального анализа кривых интенсивности для исследования структуры метилового и этилового спиртов. Результатом его работы явилось определение внутримолекулярных расстояний С—О и С —С, равных 1,43 и 1,54 А соответственно. Межмолекулярное расстояние О—Н. .. О было найдено равным 2,7 А для мета- [c.237]


    Ассоциация молекул спиртов, так же как и воды, происходит благодаря возникновению так называемых водородных связей. Водородная связь — особый вид связи она осуществляется между двумя электроотрицательными атомами (О, Ы, Р) водородом, соединенным с одним из них ковалентной связью (стр. 26). У молекул воды водородные связи образуются между атомами кислорода. [c.106]

    Ассоциация молекул воды Ассоциация молекул спирта [c.107]

    Характерной особенностью межмолекулярных водородных связей является их направленность три атома Л, Н и 5, участвующие в образовании водородной связи, расположены на одной прямой. При этом расстояние Л — Н...В для различных веществ составляет 2,5— —2,8 А. Посредством водородных связей молекулы объединяются в димеры и полимеры. Такая ассоциация молекул приводит к повышению температуры плавления и кипения, увеличению теплоты парообразования, изменению растворяющей способности. Водородные связи обусловливают аномально высокую диэлектрическую проницаемость воды и спиртов по сравнению с диэлектрическими свойствами других жидкостей, молекулы которых имеют дипольные моменты того же порядка взаимную ориентацию молекул в жидкостях и кристаллах параллельное расположение полипептидных цепочек в структуре белка поперечные связи в полимерах и в двойной спирали молекулы ДНК. Благодаря своей незначительной прочности водородная связь играет большую роль во многих биологических процессах. Характерно, что молекулы, соединенные водородными связями, сохраняют свою индивидуальность в твердых телах, жидкостях и газах. В то же время они могут вращаться, переходить таким путем на одного устойчивого положения в другое. Кроме водорода промежуточным атомом, соединяющим два различных атома, может служить дейтерий, который, как водород, расположен на линии А П...В. При такой замене водорода на дейтерий энергия связи возрастает до нескольких десятков джоулей на 1 моль. [c.133]

    Более низкая температура кипения этилмеркаптана по сравнению с этиловым спиртом объясняется относительно слабой ассоциацией молекул меркаптана (атом серы обладает меньшей электроотрицательностью, чем кислород, поэтому у меркаптанов более слабые водородные связи). [c.222]

    Большое влияние на свойства жидкостей оказывает полярность их молекул. В результате взаимодействия диполей друг с другом внутри жидкости могут образовываться молекулярные комплексы различной прочности (ассоциаты). Указанное явление получило название ассоциации молекул. Сильно ассоциированными жидкостями являются вода, спирты, жидкий аммиак, уксусная кислота и др. С повышением температуры усиливается движение молекул и молекулярные комплексы могут распадаться на отдельные молекулы. В некоторых случаях ассоциаты настолько прочны, что сохраняются даже в газообразном состоянии. Ассоциация молекул вызывает у жидкостей повышение теплоемкости, температуры кипения, теплоты парообразования и коэффициента преломления. [c.48]

    Спирты имеют достаточно высокие температуры кипения. Это связано с ассоциацией их молекул, которая происходит так же, как и ассоциация молекул воды (см. 6.3), за счет образования водородных связей между молекулами ROH (R — углеводородный радикал)  [c.366]

    Именно то, что в водно-спиртовых растворах одновременно происходят разные процессы, такие, как диссоциация воды, диссоциация снирта, ассоциация молекул воды и спирта и др., дает возможность допустить, что на одних свойствах сказываются в большей мере одни явления, а на других свойствах — другие. [c.38]

    Большинство молекул RAH, являющихся донорами протона, имеет и протоноакцепторные атомы, поэтому для межмол. B. . характерна ассоциация молекул с образованием открытых или замкнутых в циклы цепей, а также разветвленных сетчатых структур. Спирты, фенолы, амины ассоциированы по типу. ..АН... АН, амиды-по типу [c.403]

    Физические свойства спирты с числом атомов С < 15 — жидкости, далее — твердые вещества В спиртах наблюдается значительная ассоциация молекул за счет образования водородных связей [c.40]

    Это явление можно объяснить более резко выраженной водородной связью в гидроксильной группе, что способствует ассоциации молекул спирта и тем самым понижает их растворяющую способность. [c.97]

    Высокая ассоциация молекул спиртов К - ОН, образование гидратов аммиака, кристаллическое состояние карбамида обусловливаются образованием водородной связи  [c.262]

    Ассоциация молекул и структура жидкостей и твердых тел. Молекулы таких жидкостей, как НР, вода и спирты, могут при образовании водородных связей выступать как акцепторы и доноры электронного заряда одновременно. В результате этого образуются димеры (НР)з, (Н.,0)2, (СНзОН)2, трнмеры, тетрамеры и т. д., пока тепловое движение не разрушит образовавшегося кольца или цепочки молекул. Когда тепловое движение понижено, через водородные связи создается кристаллическая структура. Известная аномалия плотности воды и льда обусловлена водородными связями в кристаллах льда каждая молекула воды связана с четырьмя соседями водородными связями через две неподеленные пары атома кислорода молекула образует две докорные Н-связи и через два атома Н —две акцепторные. Эти четыре связи направлены к вершинам тетраэдра. Образующаяся гексагональная решетка льда благодаря этому не плотная, а рыхлая, в ней большой объем пустот. При плавлении порядок, существующий в кристалле (дальний порядок), нарушается, часть молекул заполняет пустоты, и плотность жидкости оказывается выше плотности кристалла. Но в жидкости частично сохраняется льдообразная структура вокруг каждой молекулы (ближний порядок). Эта структура делает воду уникальным по свойствам растворителем. Ассоциация через водородные связи приводит к аномально высоким значениям диэлектрической проницаемости таких жидкостей, как НС , НзО, метанол и др. Водородные связи типа —СО...Н—N1 — [c.139]

    Ассоциаты или сольваты могут быть образованы двумя или большим числом молекул. Иногда число молекул в ассоциате достигает значительных величин. В качестве примера можно рассмотреть ассоциацию молекул спирта, которая приводит, по-ви-димому, к образованию цепей типа [c.96]

    Водородная связь играет большую роль в процессах, происходящих при обычных температурах. Она обусловливает спира 1ьные конфигурации вторичной структуры молекул белков, нуклеиновых кислот и важна в биологических процессах, например, в механизме памяти. Водородная связь ответственна за сильную ассоциацию молекул и высокую диэлектрическую постоянную не только воды, ио и спиртов, и других жидкостей. Благодаря водородным связям лед легче жидкой воды, так что лед образуется на поверхности воды и предохраняет оставшуюся жидкую воду от потери тепла. [c.157]

    В парах фторовопорода находятся полимерные молекулы (НР)я при температуре кипения НР среднее значение п близко к 4. Способность к ассоциации молекул характерна для воды, жидкого аммиака, спиртов и многих других жидкостей (в отличие от неассоциированных жидкостей, например углеводородов). Ассоциация приводит к повышению температуры плавления, температуры кипения и теплоты парообразования и др. [c.141]

    С наличием В. с. связан ряд особенностей в-ва. Этим обусловлены кристаллич. структуры мн. молекулярных кристаллов (лед, спирты, борная к-та и др ), а также структуры белков, нуклеиновых к-т и др биологически важных соед. Ассоциация молекул обусловливает высокие значения т-р плавления и кипения, хорошую р-римость в воде, спир -тах, амидах, высокую диэлектрич. проницаемость (напр., синильной к-ты, формамида), особенности спектральных характеристик. В частности, при образовании B. . вместо узкой полосы, отвечающей колебаниям валентной связи А—И, появляется широкая полоса, максимум к-рой сдвинут в сторону малых частот. Для очень сильных В.с частота колебания АН снижается в 2-3 раза, а ширина и интегральная интенсивность полосы в ИК-спектре возрастают в 10-30 раз. Эти изменения позволяют судить об изменении межъядерного расстояния АН, а также о прочности В. с. В спектрах ЯМР образование В. с. приводит к изменению хим. сдвига 8 мостикового протона, иногда и протонов смежных групп и ядер С, 0, N, F в молекулах RAH и BR. При очень сильных В. с. хим. сдвнг мостикового протона достигает 15-20 м.д. [c.404]

    Ассоциаты (сольваты) могут быть образованы двумя или большим числом молекул иногда число молекул в ассоцнате очень велико. Ассоциация молекул спирта приводит, по-видимому, к образованию цепей  [c.286]

    Ко второй группе относятся вещества, имеющие молекулы вытянутой формы, например молекулы парафиновых углеводородов, спиртой и жирных кислот. При этом каждая молекула представляет собой зигзагообразную цепочку. Молекулы расположены параллельно. Наличие полярных групп обусловливает неравномерное распределение зарядов и вследствие этого вызывает ассоциацию молекул. Сокращение расстояния между полярными группами приводит образованию двухслойных структур. Направление, в котором располагаются молекулы в этих слоях, может быть перпендикулярным или наклонным к плоскости слоя. [c.69]

    Учитывая слабость химических сил в водно-спиртовых растворах, А. Г. Дорошевский считает возможным, что в последних в большей степени проявляются явления молекулярного порядка. Поэтому он не относит продукты ассоциации молекул воды и спирта к действительным химическим соединениям. Допустимые ассоциативные системы, как он считает, настолько слабы, что их состав легко изме- [c.37]

    Образованием водородных связей обусловлена зависящая от температуры эффективная ассоциация молекул амфипротон-ных растворителей (например, воды, спиртов, амидов) и их смесей. [c.40]

    Наличие водородной связи объясняет особенности ряда веществ. К этим особенностям относят ассоциацию молекул у спиртов, воды, кислот, что приводит к аномально высоким температурам плавления и кипения. С водородной связью связано наличие димера состава Н2Р2 и образование кислых солей типа КНр2, КаНр2- Из-за наличия дородных связей фтороводородная кислота в отличие от хлороводородной, бромоводородной [c.27]

    Ассоциация молекул и образование водородных связей. Поскольку атомы водорода ведут себя так, как будто обладают избыточным зарядом, молекулы полярных веществ стремятся к образованию ассоциаций за счет так называемых водородных связей. Тенденция к образованию таких ассоциаций снижается по мере уменьшения электроотрицательности составляющих атомов. Ионы фтора обладают наиболее сильным отрицательным зарядом, поэтому, например, фтороводо-род образует прочные ассоциативные связи как в жидкой, так и в паровой фазах. Формула газообразного фтороводорода при нормальных условиях (НР)б. Пары уксусной и муравьиной кислот при температуре, немного превышающей их точку кипения при атмосферном давлении, бимолекулярны. Степень ассоциации молекул можно определить спектроскопически. Константы химического равновесия для димеризации установлены однозначно. Данные о них представлены в задаче 1.11. Наиболее ярко тенденция к димеризации проявляется у карбоновых кислот в то же время спирты, эфиры, альдегиды и другие вещества при нормальных давлении и температуре также стремятся к ассоциации в значительной степени. Снижение этой тенденции наблюдается при уменьшении давления и концентрации, а также при повышении температуры. Классификация молекул, которые стремятся к ассоциации путем образования водородных связей, выполнена Эвеллом и др. [278]. [c.35]

    Предполагают, что катализаторы влияют только на скорость реакции. Однако в некоторых случаях при обратимой гомогенной реакции (реакция этерификации) равновесные концентрации компонентов, вероятно, изменяются с изменением концентрации катализатора. Так, Тримбль и Pичapд oн установили, что кажущаяся константа равновесия реакции между этиловым спиртом и уксусной кислотой при 30 °С возрастает в 4 раза при увеличении концентрации хлорной кислоты от нуля до 25 мол. %, но объяснить это явление они не смогли. Джонс и Лапорт , ранее отметившие каталитическое влияние соляной кислоты на эту реакцию, предположили, что оно может быть вызвано гидратацией соляной кислоты, в результате которой изменяется активная концентрация или степень ассоциации молекул воды. Безусловно, аналогичное объяснение может быть справедливо и для кажущегося сдвига равновесия, замеченного в присутствии хлорной кислоты. [c.159]


Смотреть страницы где упоминается термин Спирты ассоциация молекул: [c.663]    [c.71]    [c.23]    [c.352]    [c.38]    [c.38]    [c.203]    [c.95]    [c.35]   
Органическая химия Издание 2 (1976) -- [ c.166 , c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Молекула ассоциация

Спирты ассоциация



© 2025 chem21.info Реклама на сайте