Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен синтез

    Все высокомолекулярные соединения делятся на две группы природные (натуральный каучук, естественные смолы, целлюлоза, белки, крахмал, камеди) и искусственные (искусственные смолы, различные пластические массы, производные целлюлозы, синтетические каучуки). Иногда высокомолекулярные вещества подразделяются не на две, а на три группы природные, искусственные и синтетические, В группу синтетических соединений входят все полимеры, полученные путем синтеза низкомолекулярных веществ (капрон, найлон, полиэтилен). К числу искусственных высокомолекулярных веществ относятся соединения, получаемые в результате химической обработки природных высокополимерных соединений (в большинстве случаев это производные целлюлозы). [c.327]


    Все реакции полимеризации, используемые для синтеза промышленно важных полимеров (полиэтилен, полипропилен, тефлоны, каучуки, полистирол и т.д.), идут по механизму цепных реакций (см. гл. 15). [c.126]

    Средний молекулярный вес полиэтилена, получаемого поликонденсацией диазометана, достигает 3 300 ООО. Поскольку синтез полимера в данном случае является результатом соединения метиленовых групп, образующийся полимер часто называют пол и м е т и л е н о м. Полиметилен по составу и свойствам паиболее приближается к полиэтилену низкого давления, но отличается от него еще более высокой степенью кристалличности. [c.199]

    Галогенсодержащие полимеры имеют большое значение в практике, так как позволяют готовить достаточно термостойкие и стойкие к агрессивным средам материалы и изделия из них. Наиболее распространены хлорсодержащие полимеры, среди которых один из самых массовых — поливинилхлорид, получается полимеризацией винилхлорида. Другим представителем хлорсодержащих полимеров, получаемым в процессе синтеза, является полихлоропрен — один из самых стойких к действию различных агрессивных сред эластомеров. Остальные хлорсодержащие полимеры (хлорированный и хлорсульфированный полиэтилен, хлорбутилкаучук, хлорированный полихлоропрен, хлоркаучук и др.) получаются реакцией хлорирования соответствующих углеводородных полимеров, т. е. путем химической модификации. [c.278]

    Полиэтилены — высокомолекулярные продукты полимеризации этилена, которые имеют макромолекулы линейного строения с небольшим числом боковых ответвлений. Молекулярная масса полиэтилена в зависимости от метода и режима полимеризации колеблется от десятков тысяч до нескольких миллионов. Полиэтилен — кристаллический полимер. Полиэтилен, получаемый при высоком давлении, называют иногда полиэтиленом низкой плотности, а полиэтилен, синтез которого ведут при среднем и низком давлениях,— полиэтиленом высокой плотности. [c.127]

    По способу синтеза выделяют три класса полимеров 1) получаемые полимеризацией (полиэтилен, полипропилен, полиизобутилен, полистирол, поливинилхлорид, политетрафторэтилен, полиакрилаты и полиметакрилаты, поливинилацетат, полиформальдегид, полиуретаны и др.) 2) получаемые поли конденсацией (фенолоальдегидные, аминоальдегидные, меламиноформальдегидные смолы, полиэфиры, полиамиды, кремнийорганические полимеры и др.) 3) получаемые химической модификацией (поливиниловый спирт, поливинилацетали, эфиры целлюлозы, синтетические ионообменные материалы и др.). [c.218]


    Только в 50-х годах были разработаны и реализованы в крупном промышленном масштабе процессы производства таких продуктов нефтехимического синтеза, как полиэтилен низкого давления (1953 г.), поликарбонатные пластмассы (1953 г.), полипропилен (1954 г.), полиэфирные волокна (1955 г.), полиформальдегидные смолы (1959 г.), поливинилхлорид, различные типы синтетического каучука, поверхностно-активные вещества и другие. [c.5]

    Ботьшинство полимерных материалов получается из низко-молекуляриых соединений путем применения двух отличных по принципу методов синтеза. Один из них — с помощью реакции полимеризации, в ходе которой происходит уплотнение одинаковых молекул (например, молекул этилена в полиэтилен). С помощью реакций полимеризации получают синтетические каучуки. Так, бутадиеновый каучук получают по способу С. В. Лебедева из этилового спирта путем сополимеризации бутадиена со стиролом, акрилонитрилом, изобутилена с изопреном и т. д. получают другие разновидности каучуков, обладающие рядом ценных свойств. С помощью реакций сополимериза-цни (сочетание звеньев двух или трех типов различных полимеров) получают также разнообразные виды пластмасс (сополимер винилхлорида с винилацетатом, с винилиденхлори-дом, сополимер этилена с пропиленом и др.). [c.389]

    К числу полимеров, построенных по типу предельных углеводородов алифатического ряда, следует отнести полиэтилен, полипропилен, полиизобутилен. Исходным мономером для получения полиэтилена в промышленности служит этилен. Для синтеза полиэтилена в препаративных целях могут быть использованы диазометан и поливинилхлорид. Полипропилен получают путем полимеризацип пропилена, полиизобутилеи—полимеризацией изобутилена. [c.193]

    Синтез полиэтилена из диазометана. Большой научный интерес представляет метод получения полиэтилена из диазометана СН.2К2, так как синтезированный этим методом полиэтилен может служить моделью строго линейного высокомолекулярного кристаллического полимера с наиболее регулярным строением макромолекул. [c.197]

    Эти катализаторы позволили упростить и облегчить технологию получения многих полимеров. Например, для синтеза полиэтилена без таких катализаторов требовались жесткие условия (давление 1520-10 Па, температура около 180°С). Применяя катализаторы Циглера — Натта, полиэтилен стали получать при давлении, не превышающим 5,06-10 Па, и температуре не выше 60°С. Полиэтилен, синтезированный без катализаторов Циглера — Натта, называют полиэтиленом высокого давления в противоположность полиэтилену низкого давления (с катализатором). [c.397]

    Применение для получения анилина, бензидина, некоторых красителей для очистки смазочных масел в качестве отдушки для дешевых сортов мыла, мягкого окислителя в некоторых органических синтезах (фуксина, хинальдина и других), растворителя полиэтилен-терефталата и растворителя в реактиве Уайта, который используется для обнаружения свободного оксида кальция в цементе. [c.83]

    Полиэтилен. Термопластичный высокополимер состава — СНа — СНа —)п- Молекулярный вес продукта, получаемого при низком давлении 60 ООО—300 ООО может достигать значительно большей величины (3 300 000 уг. ед.). Синтезированный в любых условиях, представляет собой смесь кристаллической и аморфной модификаций. Соотношение этих двух фаз зависит от метода синтеза полимера. Кристаллическая фаза обусловливает плохую растворимость полиэтилена, повышает механическую прочность и твердость. Аморфная фаза придает полимеру большую эластичность и морозостойкость.  [c.242]

    Полученные радикалы являются активными центрами в цепных реакциях полимеризации непредельных углеводородов и используются для синтеза полимеров (полиэтилен, полистирол и т. д.). [c.463]

    Катализаторы О — алкилирования. Из предложенных гомогенных (серная, фосфорная, борная кислоты) и гетерогенных (оксиды алюминия, цеолиты, сульфоугли и др.) кислотных катализаторов в промышленных процессах синтеза МТБЭ наибольшее распространение получили сульфированные ионообменные смолы. В качестве полимерной матрицы сульфокатионов используются полимеры различного типа поликонденсационные (фенол — формальдегидные), полимеризационные (сополимер стирола с ди — винилбензолом), фторированный полиэтилен, активированное стекловолокно и некоторые другие. Самыми распространенными являются сульфокатиониты со стиролдивинилбензольной матрицей двух типов с невысокой удельной поверхностью около 1 м /г [c.149]

    Для алкилпроизводных дифенилолпропана основным направлением использования является стабилизация различных материалов. /прет-Бутилзамещенные дифенилолпропана могут быть использованы как неокрашивающие антиоксиданты каучуков " , турбинного масла и крекинг-бензина . Добавки 2,2-бис-(3 -бутил-4 -окси-фенил)-пропана и 2,2-бис-(3 -изопропил-4 -оксифенил)-пропана к полиэфиру делают последний устойчивым к термическому окислению стабилизованный таким же образом полиэтилен является нетоксичным и может быть использован для упаковки пищевых продуктов . 2,2-Бис-(3 -трет-бутил-4 -оксифенил)-пропан является хорошим неокрашивающим антиоксидантом для полистирола, бактерицидным агентом, а также может быть использован для синтеза смол типа фенол о-формальдегидных 2. [c.56]


    Совсем недавно фирма Ай Си Ай (Англия) разработала пока динственный сорт огнестойкого полипропилена. Многое делается для повышения термо- и светостабильности полипропилена, ведутся исследования в области синтеза и испытания различных стабилизаторов для полипропилена. Из других полиолефинов, представляющих практический интерес, следует отметить полибутилены. Хотя полибутилены менее распространены, чем полиэтилен и полипропилен, но они находят все более широкое применение в различных областях техники. [c.347]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    Позднее ВНИИгазом были проведены исследования по изучению физико-химических свойств смесей аминов (ДЭА, МДЭА, ДЭА + МДЭА) с диметиловыми эфирами полиэтилен-гликолей в различных соотношениях, на основании чего было рекомендовано использование нового отечественного абсорбента Экосорб , по свойствам идентичного дорогостоящему импортному Укарсолу . Экосорб разработан на основе компонентов, выпускаемых отечественной промышленностью (АО Синтез г. Дзержинск и ПО Азот г. Кемерово) и отличается значительно более низкой стоимостью. [c.59]

    Химическая промышленность является одним из основных потребителей поршневых компрессоров. В производстве азотных туков получение аммиака из азотноводородной смеси ведется в зависимости от системы синтеза при давлениях в пределах 25—50 Мн/м . Полиэтилен получают из этилена, сжатого до 250—350 Мн1м На такие давления строят компрессоры большой производительности и мощности. [c.7]

    Производство искусственных смол нуждается в таком широком ассортименте исходных мономеров, что трудно выбрать наиболее важные продукты, которые нефтехимическая промышленность способна поставлять для этой цели. Тем не менее в первую очередь следует назвать стирол, хлористый винил и полиэтилен из этилена, фюрмальдегид из синтетического метанола нефтехимического происхождения и мочевину из аммиака, в синтезе которого используется водород, получаемый конверсией нефтяных газов с водяным паром. [c.22]

    Хлористый винил применяют главным образом для производства поливинилхлорида, одного из трех основных термопластических высокополимеров (поливинилхлорид, полистирол и полиэтилен), а также для получения сополимеров с винилацетатом. В 1955 г. в США произведено 240 тыс. т хлористого винила, из которых большая часть пошла на получение поливинилхлорида и сополимеров. По сравнению с этими данными применение хлористого винила как промежуточного продукта для различных химических синтезов невелико. В основном его используют для получения асйЛ(Л(-дихлорэтилена, который служит также промежуточным продуктом промышленности синтетических смол. [c.167]

    Обычно процессы, протекающие при давлениях до 1000 ат, называются процессами высоких давлений-, процессы же, протекающие при давлениях выше 1000 ат, называются условно процессами свер.хвысоких давлений. Например, полиэтилен (политен) до 1955 г. получали при 2000—3000 ат сейчас этот процесс можно вести в присутствии катализаторов при нормальном (пониженном) давлении— синтез Циглера (стр. 590). Такие процессы, как синтез аммиака, синтез метанола, деструктивное гидрирование углей и тяжелых масел в бензин, проводятся под давлением 300—1000 ат. [c.348]

    Регулярность структуры. Кристаллизоваться могут только такие полимеры, молекулы которых построены регулярно. Б гомополимерах может возникнуть нерегулярность за счет разного пространственного расположения заместителей. Поэтому к кристаллизации способны только стереорегулярные полимеры. Чем больше нарушений регулярности в полимере, тем меньше содержание его кристаллической части. В таких промышленных полимерах, как полистирол или полиметилметакрилат, заместители расположены нерегулярно, эти полимеры аморфны и не содержат кристаллической части. Поливинилхлорид содержит сильно полярные атомы хлора, которые взаимно отталкиваются и поэтому значительная часть макромолекул поливинилхлорида построена относительно регулярно даже при получении полимера методом эмульсионноГ полимеризации. Поэтому поливинилхлорид частично кристаллизуется. В полиэтилене нет заместителей, поэтому полиэтилен мог Оы быть идеально кристаллическим. Однако в условиях синтеза в макромолекулах его возникают разветвления, которые нарушают регулярность, и это приводит к снижению степени кpи тaJrличнo ти в тем большей степени, чем больше разветвлений. Так, полиэтилен, полученный путем разложения диазометапа (так называемый полиметилен), является полностью линейным. Степень кристалличности достигает в нем 95%. Полиэтилен высокой плотности, полученный на катализаторах Циглера — Натта, разветвлен в большей степе- [c.182]

    Следует отметить, что существуют методы синтеза полиэтилена и без применения металлорганических катализаторов. Так, например, американская фирма Филлипс [15] разработала катализатор из СГзОд на носителе из SiO.j и AljOg. Процесс полимеризации этилена в полиэтилен (с 100% превращением) проводится при 135— 190° и 35 ат в присутствии таких растворителей, как н-пентан или н-октан. Продукт полимеризации известен под маркой марлекс . Он плавится при 113 —117 , имеет молекулярный вес 5000—30 000 [c.596]

    Реакции Циглера открывают совершенно новые пути использования олефинов синтез полиэтиленов и димеров олефинов для превращения в синтетические каучуки и ароматические углеводороды, получение первичных спиртов, синтетического волокна и т. д. Полимеризация этилена в смазочные масла в Германии проводится с 95—99% этиленовой фракцией путем обработки ее, после очистки от кислорода и сернистых примесей, хлористым алюминием при 180—200° и 10—25 ат. Давление в автоклавах при этом процессе приходится регулировать, так как оно непрерывно растет из-за образования газов (метана, этана и других углеводородов). Сырой полимеризат после дегазации нейтрализуют при 80—90 взвесью извести в метаноле (разложение А1С1,-комплекса), фильтруют центрифугируют. Из остаточных газов выделяют этилен, который поступает обратно на полимеризацию. Для обеспечения низкой температуры застывания и пологой температурной кривой вязкости к таким смазочным маслам прибавляют эфиры адипиновой кислоты или другие добавки [18]. [c.597]

    Открытие возмо ности регулировать реакции роста при анионной по.чимеризации является большим достижением хи.мии высокополимеров. В настоящее время становятся вполне реал1>-ными процессы синтеза таких ценных полимеров, как полиизопрен и его производные, крис-стал.нический полиэтилен регу.чя()-ного строения, изотактические ио.тн-нропилен, полиметилметакри,лат, но- шстирол и др. [c.151]

    Синтез полиэтилена из поливинилхлорида. При исследовании строения макромолекул поливинилхлорида последний подвергали восстановлению гидридом лития в растворе тетрагидрофурана при 150°. При этом был получен полиэтилен. Превращение поливинилхлорида в полиэтилен связано с полным замещением в нем лтомов хлора атомами водорода  [c.199]

    Радикальная полимеризация служит промышленным способом синтеза многих важных полимеров, таких, как поливинилхлорид [—СН— H I—] , поливинилацетат [—СН2— —СН(ОСОСНз)—]п, полистирол [—СН2—СН(СвН5)—] , полиакрилат, (—СН2—С(СНз((СООН)—] , полиэтилен [—СН2— —СНг—]п, полидиены [—СН2— (R)= H—СНг—] , и различных сополимеров. [c.353]

    В короткий срок развилось крупное промышленное производство алюминийорганических соединений, которые приобрели важное значение в ряде областей. Они используются, например, как катализаторы процессов полимеризации с их помощью получают полиэтилен низкого давления, другие полиолефины, стереорегу-лярный бутадиеновый и изопреновый каучук. Используют алюми-нийорганические соединения и для синтеза высших спиртов. Сначала нз этилена и триэтилалюминия получают высшие алюминийтриал-килы, например  [c.251]

    Алюминийорганические соединения используются как катализаторы процессов полимеризации с их помощью получают полиэтилен низкого давления, другие полиалкены, стереорегулярный бутадиеновый и изопреновый каучук. Используют алюминийорганические соединения и для синтеза высших спиртов. Сначала из этилена и триэтилалюминия получают высшие триалкилалюминиевые соединения, например  [c.350]

    Эта реакция, осуществляемая при пропускании паров алкилбромидов или плкилиодидов через колоику-реактор с раствором ази (п натрия в полиэтилен-гликоле-1000 или твине-8(), нанесенном на диатомитовый носитель, в рекомен-дованны.х в [591 условиях проходит количественно, что может быть использовано для синтеза необходимых алкилазидив в препаративны.ч масштабах [60]. [c.196]

    Полученные радикалы являются активными центрами в цепных реакциях полимеризации непредельныл углеводородов и используются как инициаторы при радикальном методе полимеризации для синтеза полимеров (полиэтилен, полистирол и т. д.). [c.479]

    Алюминийорганические соединения применяются в промышленности, так как с их помощью оказалось возможным осуществить ряд важных технических синтезов. Так, например, в присутствии триэтилалюминия получают полиэтилен неразветвлен-ного строения (см. стр. 88). [c.125]

    Недостатком огнезащитного покрытия Flammastik, в состав которого входит сополимер полиэтилена и поливинилацетата, является использование для синтеза сополимера легковоспламеняемого мономера — винилацетата, который на стадии сополимеризации с полиэтиленом при нанесении покрытия на кабель создает повышенную пожароопасность. Полученный в процессе реакции сополимер является трудновоспламеняемым материалом. [c.144]


Смотреть страницы где упоминается термин Полиэтилен синтез: [c.261]    [c.15]    [c.5]    [c.6]    [c.588]    [c.596]    [c.208]    [c.31]    [c.669]    [c.7]    [c.470]    [c.470]   
Препаративные методы химии полимеров (1963) -- [ c.251 ]

Основы химии полимеров (1974) -- [ c.243 , c.504 ]

Справочник по пластическим массам (1967) -- [ c.9 ]

Химия синтетических полимеров Издание 3 (1971) -- [ c.236 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры в синтезе ионитов полиэтилен

Синтез алгоритма управления показателем текучести расплава полиэтилена

Синтез мономеров и полимеров Этилен и полиэтилен

Циглера синтез полиэтилена

Шапиро (Франция). Синтез привитых сополимеров под действием ионизирующих излучений. III. Сравнительное изучение реакций прививки к полиэтилену и полипропилену



© 2025 chem21.info Реклама на сайте