Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен как связующее

    Подробное изучение, проведенное рядом исследователей [266 —294], показало, что при действии у-и р-лучей на полиэтилен связи С—Н разрушаются с отщеплением водорода происходит сшивание соседних молекул. Результат зависит от времени облучения. [c.190]

    С точки зрения сырьевых ресурсов полиэтилен находится в чрезвычайно благоприятном положении и является наиболее потенциально важным синтетическим термопластическим материалом. Тот факт, что производство этилена страдало от недостатка снабжения сырьем, является прежде всего результатом патентной политики. Эта обстановка в настоящее время резко меняется в связи с истечением сроков патентов. Производственные мощности полиэтилена в настоящее время расширяются, что приведет к широкому потреблению этого замечательного продукта в соответствии с его уникальными свойствами и благоприятной обстановкой с сырьем. [c.165]


    Под действием у-лучей во многих полимерах и, в частности, в полиэтилене увеличивается число поперечных связей, что повышает механическую прочность и термическую стойкость полимера и делает его более стойким по отношению к действию [c.263]

    Этилен легко превращается во множество полезных продуктов из-за высокой реакционной способности двойной связи. Этанол (этиловый спирт) и полиэтилен — два важнейших вещества, получаемые в промышленных масштабах из этилена. [c.219]

    На практике используют также твердые гетерогенные электроды, чувствительный элемент которых состоит из активного компонента (те же соединения, что и в гомогенных электродах) и инертного связующего материала (полиэтилен, эпоксидная смола). [c.121]

    Для моделирования свойств смол и асфальтенов использовался полиэтилен низкой кристалличности (от 5 до 10%), определенной с помощью ИК-спектроскопии. Рентгенограмма также показала наличие слабых рефлексов, полоса — (200) при 3,7 А. Полиэтилен служил для имитации алифатической части молекул асфальтенов, а в качестве ароматической части таковых бралась сажа. Конечно, оба компонента в этой искусственной смеси (полиэтилен и сажа) не воспроизводили тип углеродного скелета алифатической и ароматической частей молекул асфальтенов. Это была искусственная модель (заменитель), в какой-то мере чисто формально позволившая выявить характер влияния двух образцов углеродистого вещества с разным типом С—С-связей алифатической (полиэтилен) и графитоподобной — ароматической (сажа), на физическую упаковку (структуру) этой бинарной смеси — заменителя асфальтенов. Смесь сажа—полиэтилен составлялась постепенным добавлением сажи к полиэтилену под гидравлическим резиновым прессом. Образец этой смеси проводился 15 раз через пресс. Рентгеновские измерения производились при интенсивности в интервале 20=8н-100°. Были получены записи рентгеновской дифракции для различных асфальтенов и нефтяных смол (рис. 46). Путем нормализации этих кривых и сравнения их с независимой кривой распределения углерода в интервале (sin 0)Д=0,08-н0,5 были получены кривые рентгеновской дифракции (рис. 47) для исследованных природных образцов, которые сопоставлялись с кривыми для образцов кристаллического полиэтилена, сажи и их смесей (рис. 48). Такой прием нормализации был применен с целью разрешения 7- и (002)-полос, которые в дальнейшем служили для количест- [c.232]


    В реакторах, где происходит полимеризация, лишь часть этилена превращается в полиэтилен. Остальное количество возвращается при давлении 25 Мн м и подлежит повторному сжатию. В связи с этим, а также с необходимостью сравнительно часто ремонтировать цилиндры ступеней сверхвысокого давления, процесс сжатия разделяют, осуществляя первоначальное сжатие (до 25 Мн м ) в компрессорах первого каскада и последующее — в компрессорах второго каскада. [c.640]

    При облучении полиэтилена или другого полимера у-лучами между цепями образуются поперечные связи. Какие изменения в физико-химических свойствах должны произойти в результате образования таких связей Станет ли полиэтилен более эластичным Что произойдет при охлаждении образца, если проводить облучение при температуре выше [c.158]

    Полиэтилен низкой плотности существенно отличается по своим свойствам от полиэтилена, полученного на катализаторе Циглера он имеет более низкие плотность и температуру плавления. Было высказано предположение, что это связано с разветвленностью цепей продукта, синтезированного при высоком давлении. Объяснить, каким образом в процессе полимеризации могут образовываться разветвленные макромолекулы и какое они могут оказать влияние на плотность, и растворимость полимера  [c.285]

    Однако на)ряду с этим в нефтеперерабатывающей промышленности существовали факторы, приведшие к снижению производительности труда это ввод новых трудоемких процессов ухудшение состава сырья, увеличение в структуре производства доли масляного и нефтехимического производства. Как показали расчеты, ввод большей части вторичных процессов, которые, как известно, связаны либо с повышением качества продукции, либо с производством новой продукции (полиэтилен, полипропилен и др.), но отличаются высокой трудоемкостью, приводит к снижению производительности труда. Отрицательное влияние яа производительность труда оказывали также медленное освоение этих процессов и недостатки в методике построения цен, -которая не учитывала качество продукции и эффект у потребителя. Поэтому разработка более обоснованных цен, учитывающих общественную полезность продукции и ее качество, введение надбавок при присвоении продукции Знака качества , а также проведение мероприятий, направленных ца ускорение внедрения новой техники и повышение ее эффективности, обеспечат значительный рост производительности труда. [c.238]

    Химическое расщепление высокомолекулярных веществ путем окисления или аутоокисления происходит так же, как у низкомолекулярных соединений, например по месту двойных связей. Насыщенные полимерные вещества, такие как полиэтилен, тоже чувствительны к аутоокислению. В этом случае расщепление, вероятно, происходит у третичных атомов углерода. [c.949]

    При действии на полиэтилен радиоактивного излучения" происходит интенсивное выделение газов, в которых содержится водород и небольшое количество низкомолекулярных углеводородов, Выделение каждой молекулы водорода связано с образованием двух макрорадикалов  [c.212]

    Полимерные материалы состоят из гигантских молекул, молекулярная масса которых составляет 10 —10 . Некоторые полимеры имеют естественное происхождение (целлюлоза, шелк, натуральный каучук, ДНК и т. д.), другие (полиэтилен, полиэфир, найлон и т. д.) — искусственное происхождение. Образование макромолекул связано со способностью определенных мономеров соединяться друг с другом с помощью ковалентных химических связей. Этот химический процесс называется полимеризацией, а образующиеся цепные молекулы могут иметь линейную, разветвленную или трехмерную (сетчатую) структуру. [c.36]

    Остов полимеров. В наиболее ясно выраженном виде остовы разных видов существуют в строении атомных соединений, что не удивительно, так как преобладающие в строении этих соединений ковалентные связи отличаются не только направленностью, но и прочностью. Так, в органических соединениях часто встречаются цепные, слоистые и каркасные остовы, построенные из атомов углерода, соединенных а-связями. Цепочечный остов можно обнаружить в твердом парафине, в полиэтилене (рис. 20) трехмерный— в активированном угле, в алмазе. Остовы всех этих трех видов часто имеют ароматические соединения. Подобным двухмерным, слоистым остовом обладает графит. [c.78]

    Радиационная деструкция происходит под влиянием нейтронов, а также а-, р-, у-излучения. В результате разрываются химические связи (С—С, С—Н) с образованием низкомолекулярных продуктов и макрорадикалов, участвующих в дальнейших реакциях. Облучение полимеров изменяет их свойства с образованием двойных связей или пространственных структур (трехмерной сетки) или приводит к деструкции. Но иногда происходит и улучшение качеств облучаемого полимера. Например, полиэтилен после радиационной обработки приобретает высокую термо- и химическую стойкость. Радиоактивное излучение, ионизируя полимерные материалы, способно вызывать в них и ионные реакции. [c.411]


    Сам скелет цепи состоит из углеродной цепочки, в которой соседние связи С—С находятся под валентным углом ов (рис. 4.2), где валентный угол ав = л—а равен 109,5°, а дополнительный угол а = 70,5 Связи С—С могут вращаться друг относительно друга по конусам. Поэтому в целом цепь полиэтилена в растворе или расплаве может принимать различные конформации, т. е. проявлять гибкость. Полиэтилен обычно находится в кристаллическом состоянии. В кристаллической фазе полимера вращения связей не происходит. [c.86]

    В реальных молекулярных цепях полимеров на конусе вращения имеется один-два (или больше) минимума с различными потенциальными энергиями. Связь С—С может находиться либо в одном, либо в другом из этих положений с минимальными значениями потенциальной энергии. Подобные различные конформации молекул, отличающиеся потенциальной энергией, относятся к поворотным изомерам [41 11], характерным как для полимеров, так и для низкомолекулярных веществ. У полимеров они представляют собой набор различных конформаций цепей —от свернутых до распрямленных. Анализ с этих позиций формулы (4.13) привел М. В. Волькенштейна и О. Б. Птицына к заключению, что формула Тейлора относится к полимерам с симметричными привесками (полиэтилен, полиизобутилен), в которых потенциал внутреннего вращения симметричен относительно трансположения, т. е. /(ф) = = и —ф) (см. рис. 4.8 и 4.10). [c.94]

    Антифрикционные свойства тефлона изучены достаточно хорошо, тогда как антифрикционные свойства пластмасс на основе полиамидов и полиэтиленов, применяемых в качестве подшипниковых материалов для некоторых легко нагруженных сопряженных деталей машин, изучены мало. В связи с этим Матвеевским были исследованы полиамиды различных марок, полиэтилен низкого и высокого давления и тефлон. Часть испытаний длительностью 60 мин велась при температуре 20 С, а испытания при повышенных температурах длились 1 мин. Температура изменялась от 20 до 350° С. Для всех полиамидов при сухом трении по стали наблюдалось прерывистое скольжение, сопровождающееся значительными скачками коэффициента трения. Наибольшее значение коэффициента трения и его скачка были получены для полиамидов. [c.364]

    Синтез полиэтилена из поливинилхлорида. При исследовании строения макромолекул поливинилхлорида последний подвергали восстановлению гидридом лития в растворе тетрагидрофурана при 150°. При этом был получен полиэтилен. Превращение поливинилхлорида в полиэтилен связано с полным замещением в нем лтомов хлора атомами водорода  [c.199]

    Такие сложные приемы изготовления изделий на основе каучуков с полиэтиленом связаны с недостаточной совместимостью этих полимеров, а также плохой совулканизуемостью. Поэтому полиэтилен применяют лишь в небольших добавках для улучшения технологической обработки смесей, например, при каландровании неопрена и шприцевании бутилкаучука з . [c.62]

    Для сополимеров акршата кобальта со стиролом и полиэтиленом зафиксированы значительные изменения в ИК-спектрах после первого же цикла использования катализатора. Для первого из них изменения связаны о наличием в катализаторе двух типов ионов Со(П). Ионы, закрепленные в матрице обеими акршатянми группи-ровкаш, остаются неизмененными в ходе окислешя, а ионы Со(П), закрепленные в полимере лишь одной группой при окислении, теряет свободную акрилатную группу (в раствор вымывается акриловая кислота) и при этом подвергаются окислительному гидролизу с образованием частиц (СоО)ОН, (СоО) , Со(0Н)2 Изменение ИК-спектра сополимера о полиэтиленом связано с окислением полиэтиленовой подложки и появлением в полимерной цепи простых эфирных группировок. -  [c.55]

    Многие авторы 1791-1797 изучали ядерный магнитный резонанс в двух образцах полиметилена, полученных полимеризацией диазометана и подвергнутых различной термообработке, и в образце линейного полиэтилена, перекристаллизованного из трихлорэтилена в интервале 90—400° К. Авторы отмечают изменение спектров ЯМР с температурой и объясняют это наличием а- и р-переходов, которые были обнаружены при изучении механических и диэлектрических потерь в полиэтилене при температурах соответственно 360—370, 240—270 и 140—170° К. В некоторых образцах наблюдаются также переходы при 210 и 330° К. По-видимому, низкотемпературные переходы в полиэтилене связаны с движением частей цепи полимера, состоящих из разного числа звеньев в кристаллическом полиэтилене марлекс-50 р-переход обусловлен разупорядочиванием участков цепи, состоящей из шести СНг-групп. [c.269]

    Обычно полагают , что Р-пик в полиэтилене связан с размораживанием сегментального движения основных цепей в аморфных областях, т. е, со стеклованием аморфной прослойки полиэтилена. Однако Синнотт в сильно закристаллизованном линейном полиэтилене не обнаружил Р релаксации. В связи с этим предполагает-ся 1- 1 , что Р-релаксация в полиэтилене связана с движением разветвленных участков цепей и отсутствует в полностью линейном неразветвленном полимере. Однако эта точка зрения не согласуется с результатами измерений Мура и Матсуоки , которые наблюдали Р-пик и в линейном полиэтилене. [c.161]

    Обычно в полиэтилене кристаллические области расположены беспорядочно. В ориентированном материале они группируются вдоль оси растяжения. Образцы, вырезанные под различными углами к этой оси, обладают различными вязкоупругими свойствами. Такая ориентация увеличивает значение псевдоравновесного модуля в направлении растяжения. В перпендикулярном направлении модуль существенно не меняется. Для анизотропных систем выражение (22) оказывается неприменимым. Можно полагать, что увеличение модуля упругости в ориентированном полиэтилене связано с повышением степени кристалличности и растяжением большинства аморфных цепей до длины, близкой к предельной. Это можно проверить с помощью кривых растяжения, полученных на образцах, которые вырезали из ориентированных пластин под различными углами к оси ориентации. Такие опыты на образцах из ПНД проводил, например, Гаубе [c.89]

    В последнее время особое значение приобретают продукты сульфохлорирования полиэтиленов. При взаимодействии полиэтилена с хлором и сернистым ангидридом получаются продукты, содержащие около 2G— 29% хлора и от 1,3 до 1,7% серы. Отсюда можно подсчитать, что прп молекулярном весе полиэтилена, равном 20000, каждый седьмой атом С связан с атомом хлора, а каждый девяностый атом с сульфохлоридной группой. Такой продукт вулканизируется добавкой ароматических диаминов, как,, например, бензидипа или диоксима, тиурамена и аналогичных соединений. При этом получается цепное каучукообразное вещество (гипалон Sa фирмы Дюнон). Возможности различных вариаций состава и свойств продуктов, которые могут быть получены на основе полиэтиленов, как в связи с различной глубиной сульфохлорирования, так п путем применения полиэтиленов различного молекулярного веса, очень велики. [c.142]

    Интересный новый вид полимеризации бутадиена при помощи катализатора Циглера, применяемого для полимеризации этилена в полиэтилен, предложен Вильке [51. Таким иутем мо кио из бутадиена получить с 80— 90%-ным выходом оба стереоизомера циклододекатриена-1,5,9. Этот циклический тример представляет особый промышлеиный интерес в связи с возможностью получения из него додекандикислоты и соответственно ш-амипо-додеканокислого лактама. [c.262]

    М. В. Перрин [22] описывает более ранний этап экспериментальных исследований, приведших к открытию полиэтилена в лабораториях Империал Кемикел Индастриез. Это исследование вначале даже отдаленно не было связано с изучением полимеризации или свойств этилена, а было направлено на получение основных данных о влиянии высокого давления на физические свойства вещества и возможного химического эффекта от применения высокого давления. Специальный опыт, приведший к образованию полимера, предназначался для конденсации бензальдегида с этиленом. Однако при вскрытии автоклава было обнаружено, что бензальдегид остался в неизмененном состоянии, а внутренние стенки автоклава были покрыты белым твердым веществом в виде тонкой пленки. Ввиду того, что последующие опыты сопровождались взрывами, работа была прекращена. Спустя 2 года этот продукт был открыт вторично и снова случайно. Перрин подчеркивает, что факт признания открытия, может быть, является более выдающимся событием, чем само открытие. Фирма Империал Кемикел Индастриез построила небольшой завод и запатентовала полиэтилен в Англии, США и Франции как новое вещество. [c.166]

    Два последних высокомолекулярных алифатических углеводорода (полиэтилен и гидрированный полибутадиен) уникальны в том отношении, что они представляют собой примеры нерегулярно разветвленных структур. Фокс и Мертин при изучении инфракрасных снектров углеводородов в области 3—4 [л обнаружили полосу поглощения при 3,38 ц в спектре полиэтилена, которая является характеристической областью колебаний связи С—Н в метильных группах. Было определено, что соотношение СНз составляет от 1/д до 1/70- Все эти величины значительно превышают частоты, которых следовало ожидать, если бы полимеры представляли собой линейные углеводороды. Многие исследователи с тех пор способствовали детальной расшифровке инфракрасных спектров полиэтилена. Наиболее полные и точные исследования провели Рагг [28] и Кросс [9]. Последняя работа представляет особый интерес, поскольку в ней была определена зависимость между интенсивностью поглощения метильных групп и плотностью полимера. Степень кристалличности полиэтилена была определена при помощи нескольких различных методов, основанных, например, на измерениях плотности инфракрасных спектров, дифракции Х-лучей и теплоемкости. Ни один из этих методов не принимался за абсолютный, но метод, основанный на определении плотпости полимера, по-видимому, один из дающих наиболее достоверные данные. Поэтому Кросс впервые установил, что существует тесная зависимость между числом метильных групп в нолиэтиленах и их кристалличностью. [c.169]

    Этот механизм чрезвычайно гибок и потому может легко объяснить картииу пепредельных структур, на11денных и полиэтилене. Он согласуется также с наблюдаемым фактом, что на молекулу полиэтилена непредельность является практически величиной постоянной. Так, папример, Кросс [9 нашел, что, начиная от твердых полимеров молекулярного веса 15 ООО до смазок низкого молекулярного веса до 480 и кончая жидкими продуктами пиролиза молекулярного веса 220, непредельность колебалась в пределах от 0,3 до 0,4 двойных связей на молекулу. [c.173]

    В реакторах, где происходит полимеразиция, лишь часть этилена превращается в полиэтилен. Остальное количество возвращается в систему при давлении 250 ат и подлежит повторному сжатию. В связи с этим процесс сжатия осуществляют первоначально в компрессорах первого каскада (до 250 ат), а затем в компрессорах второго каскада (до рабочего давления в реакторе). [c.240]

    Вопросам подготовки поверхности для нанесения покрытия уделяется большое внимание. В США разработан и применен метод соединения полиэтилена с алюминием при помощи промежуточного мономолекуляр-ного слоя другого вещества. В данном методе применяют органическую кислоту с длинной углеводородной цепью (стеариновую), которая образует химическую связь с металлом и физическую с термопластом стеариновая кислота своей карбоксильной группой с металлом образует стеариты, а ее углеводородная часть внедряется в полиэтилен. Такой промежуточный слой обеспечивает прочное сцепление полиэтилена с алюминием. Широкое применение в антикоррозионной защите в последнее время нашли покрытия из хлорированного полиэфира. [c.223]

    Линейные полимеры образуют саь ую большую группу полимерных материалов Так ак связь меяду молекулярными цепями обусловлена силами Ван-дер-Ваальса, которые невелики, прч повышении температуры полимеры этого вида легко размягчаются и превращаются в жидкость. Линейные полимеры являются основой термопластических материалов (термопластов). Типичными представителями линейных полимеров являются полиэтилен, полипропилен, политетрафторэтилен и др. Воледствие цепной стрз ктуры полимеры можно легко вытянуть в высокопрочные волокна. [c.18]

    Гибкие макромолекулы линейных полимеров с высокой прочностью вдоль цепи и слабыми межмолекулярными связями обеспечивают эластичность материала. Шогие такие полимеры растворяются в растворителях, Иа физико-механические и химические свойства линейного полимера влияет плотность упаковки молекул в единице объема. При плотной упаковке возникает более сильное мемыолекулярное притяжение, что приводит к повышении плотности, прочности, температуры размягчения и уменьшению растворимости. Линейные полимеры являются наиболее подходящими для- получения волокон и пленок (например, полиэтилен, полиамлды и др.). [c.21]

    Полиизобутилены хорошо смешиваются с расплавленным парафином и в отличие от полиэтиленов практически не повышают температуру плавления композиций (см. табл. 5). Это связано с тем, что полиизобутилены молекулярного веса до 15 000 имеют каучукообразный характер и представляют полутвердые вязкие продукты, в то время как полиэтилен такого же молекулярного веса является твердым веществом. [c.18]

    Под действием улучей в полиэтилене и в других полимерах увеличивается число поперечных связей, что повышает прочность и стойкость полимера. [c.365]

    Во-вторых, нанесение полимерного защитного покрытия резко меняет природу материала подложки место кристаллического атомного соединения - металла - занимает аморфное атомное соединение - полимер, т.е. происходит замена типа электронной структуры материала подложки. Замена кристаллического атомного соединения, у которого каждый электрон взаимодействует сразу со всей системой в целом, на аморфное атомное соединение, электронная структура которого представляет собой набор дискретных уровней, разделенных высокими потенциальными барьерами, препятствующими распределению электронных волн за границу каждой данной межатомной связи, меняет механизм взаимодействия подложки с такими типичными молекулярными твердыми соединениями, какими являются кристаллические парафиновые частицы. В результате такой замены более интенсивная адгезионная связь, основанная на образовании двойного электрического слоя, возникающего в результате контактной электризации поверхностей металла и парафиновой частицы, с энергией более 65 кДж/моль /56/, сменяется адгезионной связью, определяемой ван-дер-ваальсовыми силами, энергия которых не превышает 50 кДж/моль. Поэтому смена металлической поверхности на полимерную уже сама по себе должна привести к ослаблению адгезионной связи. Действительно, как бьшо показано экспериментально /30/, сила прилипания парафина к поверхности такого наиболее интенсивно парафинирующегося полимера, как полиэтилен, в 2,3 раза ниже, чем у стали. [c.143]

    Приведенная схема объясняет постепенное увеличение количества поперечных связей в облучаемом полиэтилене. Образование низкомолекулярных углеводородов связано, по-иидимому, с отщеплением от полимерных цепей коротких боковых ответвлений. Присутствие кислорода в процессе облучения приводит к разрыву макромолекул и образованию перекисных мостиков. Постепенно полимер становится жестким и утрачивает растворимость, одновременно снижается и степень кристалличности полимера. [c.213]

    Под влиянием радиоактивного излучения полиизобутилеи, 1, противоположность полиэтилену и полипропилену, разрушается без последующего структурирования, т, е. не образует сетчатый полимер. Молекулярный вес полиизобутилена уменьшается пропорционально увеличению дозы облучения, вплоть до обра-К1ваиия вязкой жидкости (степень полимеризации порядка 7). Каждый разрыв главной цепи полиизобутилена сопровождается образованием двойных связей в макромолекулах и выделением метана. [c.218]

    Величтша энергии связи углерод—фтор больше энергии связи углерода с водородом, причем в присутствии атомов фтора повышается прочность соседних с ними связей между углеродными атомами. Вследствие этого полимеры фторпроизводных этилена обладают наиболее высокой химической и термической стойкостью по сравнению с другими органическими полимерами, в том числе и по сравнению с полиэтиленом. Особенность связи углерод— фтор ярко выражена в свойствах политетрафторэтилена, который отличается наибольшей химической инертностью и термоустойчивостью. [c.253]

    Энергия связи углерод—хлор меньше энергии связи углерод— ьодород, поэтому поливинилхлорид обладает меньшей термической и химической стойкостью, чем полиэтилен. Подавляющее большинство процессов химических превращений поливинилхлорида, его термическая, световая и окислительная деструкции происходят с замещением или отщеплением H I от макромолекул гюлимера. [c.253]

    Гетерогенные мембранные электроды. Не всегда возможно получение мембраны в гомогенном состоянии. Значительно доступнее приготовление твердого гетерогенного мембранного электрода внесением тонкодиспергированного вещества с заданными свойствами в инертную мембрану из полимерного материала (матрицу). Матрица должна обладать механической прочт-ностью, быть химически инертной. В качестве связующего материала используются парафин, коллодий, поливинилхлорид (ПВХ), полистирол, полиэтилен, силиконовый каучук. Последний обладает хорошими гидрофобными свойствами, эластичен, плохо набухает в водных растворах. [c.54]

    Вернемся теперь к рассмотрению карбоцепной макромолекулы, произвольной структуры, скелет которой состоит из простой углеродной цепочки, в которой соседние связи С—С находятся под валентным углом ав (рис. IV. 2), где валентный угол в—я — а=109°30 а дополнительный угол 06 = 70°30 (ср. гл. I). Связи С—С могут вращаться друг относительно друга по конусам. Простейшим представителем этого класса полимеров является полиэтилен [—СНа—СНг—]п- Несмотря на то, что полиэтилен — тилич-ный эластомер с низкой температурой стеклования, в твердом состоянии он обычно закристаллизован и гибкость его цепей не проявляется. [c.126]

    На том же эффекте основано отделение бензола в колонке с карбоваксом 400 от н-декана, причем бензол с температурой кипения 80°С выходит из колонки позже н-декана, несмотря на то, что температура кипения последнего 170 С. Карбовакс (полиэтилен-гликоль) тоже содержит в гидроксильных группах протонизирован-иые атомы водорода, способные к образованию водородной связи с л-электронами двойных связей бензола. [c.194]


Смотреть страницы где упоминается термин Полиэтилен как связующее: [c.40]    [c.103]    [c.196]    [c.103]    [c.6]    [c.950]    [c.55]    [c.241]   
Энциклопедия полимеров Том 3 (1977) -- [ c.208 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.208 ]




ПОИСК







© 2025 chem21.info Реклама на сайте