Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термическое окисление

    Основные стадии процесса производства серы из технического сероводорода термическое окисление сероводорода кислородом воздуха с получением серы и диоксида серы взаимодействие диоксида серы с сероводородом в реакторах (конверторах), загруженных катализатором. [c.111]

    Термическое окисление циклоалканов в присутствии борной кислоты. Описанный выше процесс каталитического окисления циклоалканов характеризуется малой селективностью даже при низкой степени конверсии сырья. Этот недостаток приобретает особенно важное значение при окислении циклоалканов Ся и С12, когда каталитическое окисление идет еще менее селективно, а исходные углеводороды являются более дорогостоящими по сравнению с циклогексаном. Это вызвало появление и разработку других, более селективных процессов окисления. [c.390]


    В патентной литературе имеется также описание некаталитического (термического) окисления низших газообразных парафинов, которое проводили при недостатке кислорода в реакторе из металла, устойчивого к действию высоких температур и продуктов реакции [7]. Температура процесса равнялась 400—500°, причем температуру поверхности реактора поддерживали на уровне ниже 200°. Полученные гидроперекиси имели такое же строение, что и гидроперекиси, обнаруженные в только что описанном опыте, однако незначительные изменения в условиях реакции приводили к образованию водного раствора перекиси водорода как основного продукта из числа веществ, содержавших активный кислород. Так, например, при работе со смесью из 90% пропана и 10% кислорода с продолжительностью реакции 5 сек. (температура в реакторе 470°, температура стенки 150°) основным кислородсодержащим продуктом была перекись водорода, полученная в виде 3—4%-ного водного раствора [8]. Этот способ получения перекиси водорода, по-видимому, уступает место прямому окислению изопропилового спирта, в результате которого тоже образуется перекись водорода (см. гл. 8, стр. 150). [c.71]

    Процесс термического окисления протекает в основной топке, смонтированной в одном агрегате с котлом-утилизатором. [c.111]

    Требование, заключающееся в том, чтобы моторное масло сохраняло свой состав на протяжении экономически обоснованного периода эксплуатации, связано с понятием о химической стабильности масел, которая определяется главным образом склонностью к термическому окислению. [c.491]

    Правее линии ЕМ расположена область, где термическое окисление углеводородов протекает с измеримой скоростью. Внутри этой области кривая BGE ограничивает об.пасть холодных пламен. Быте области холодных пламен, близко примыкая к ней, расположена область отрицательного температурного коэффициента реакции (заштриховано). [c.221]

    В низкотемпературной области термического окисления углеводородов основными продуктами реакции являются альдегиды, спирты, олефины, низшие углеводороды, а также в некоторых условиях органические перекиси, кислоты, перекись водорода и гетероциклы, содержащие атом кислорода. [c.221]

    Так, предлагалось окислять циклоалканы Сз и С12 до гидропероксидов с разложением последних щелочью до смеси спирта с кетоном. Более эффективным оказался другой способ — термическое окисление воздухом, обедненным кислородом (до концентрации 3—4% О2). Эти условия, как показано ранее (стр. 365) и аналогично окислению парафинов (стр. 380), способствуют преимущественному образованию спирта по сравнению с кетоном. Если, кроме того, проводить процесс в присутствии борной кислоты, последняя связывает спирты в эфиры [c.390]


    Так как температура в слое катализатора зависит от содержания аммиака в исходном газе и от температуры подогрева исходной смеси, в работе [481 изучено влияние температуры исходного газа на входе в кипящий слой железохромового катализатора на степень окисления аммиака. Как видно из рис. 80, повышение температуры подогрева исходного газа сначала приводит к увеличению степени окисления аммиака до максимального значения при дальнейшем повышении температуры степень окисления снижается. Увеличение степени окисления аммиака при повышении температуры исходного газа перед кипящим слоем катализатора происходит за счет снижения входного эффекта (см. главу П), который заключается в том, что температура исходного газа при проходе его через газораспределительную решетку изменяется от 4х (До решетки) до в основной части кипящего слоя. В то же время нагревание исходного газа выше 300° С приводит не только к уменьшению величины входного эффекта, но и к термическому окислению аммиака до азота на стенках реактора и при прохождении через газораспределительную решетку. Конкуренция этих двух факторов приводит к максимуму на кривой (рис. 80). Увеличение концентрации аммиака в исходном газе приводит к смещению этого максимума в сторону низких температур подогрева. Смещение максимума в сторону низких температур (на рис. 80 показано пунктирной линией) объясняется тем, что с увеличением концентрации аммиака в исходном газе тепловой эффект процесса (считая на единицу объема аммиачно-воздушной смеси) возрастает, количество выделившегося тепла в зоне входного эффекта увеличивается, величина же входного эффекта уменьшается, что приводит к увеличению степени окисления аммиака до окиси азота. [c.159]

    Далее белый фосфор идет на производство ортофосфорной кислоты. Классический промышленный метод — термическое окисление фосфора с последующим поглощением оксида фосфора (V) водой. [c.128]

    Термическое окисление алмаза [c.148]

    Обсуждается механизм зашитного действия борного ангидрида и геля кремневой кислоты при термическом окислении алмаза. [c.148]

    Термическое окисление фафита [c.150]

    Кинетика и механизм термического окисления. Общий характер процесса термического оксидирования кремния может быть представлен кинетической кривой d = /(т) при Т = onst, где d — толщина пленки оксида т —время (рис. 63). Условно кривая может быть разбита на четыре участка, для которых явный вид функции d = /(т) различен. Участок I, соответствующий начальному периоду окисления, описывается линейной функцией d = kx. Скорость роста пленки на этом этапе постоянна и определяется стадией поверхностной реакции. В реальных условиях обычно эту стадию не наблюдают, поскольку поверхность кремния уже покрыта тонким плотным слоем оксида (см. рис.62,а). По мере роста пленки все большую роль начинает играть диффузия окислителя к границе раздела Si—SiOg. Поэтому на участке И линейная зависимость к = kx сменяется линейно-параболической [c.112]

    Добавка брома и облучение ультрафиолетовым светом были выбраны в предположении, что фотолиз молекулярного брома приведет к образованию атомов брома при температурах, значительно более низких, чем температуры термического окисления пропана. Далее предполагалось, что возникшие атомы брома смогут генерировать пропильные радикалы также при низких температурах  [c.452]

    Действительно, для этих кривых, отличных от -образных кривых термического окисления пропана, характерным является то, что после впуска смеси в реакционный сосуд начинается, практически без всякого периода индукции, пе рост, а падение давления. Только после достижения максимального падения давления начинается его /5-образный подъем. [c.452]

    Энергия активации термического окисления изопропил-, бензола, протекающего при 120°С по реакции  [c.129]

    Изучение влияния термического окисления поверхности кремния на высоту барьера контакта З)—А1. [c.220]

    Соединение цепей через кислородный мостик происходит в процессе термического окисления кремнийорганических полимеров. Сначала в результате окисления отщепляются углеводородные радикалы  [c.48]

    Энергия активации процесса термического окисления, определяющая температурную зависимость скорости, является эффективной характеристикой реакции. Реально оксидирование протекает очень сложным об-параллельных стадий взаимозависимость скорости реакции [c.114]

    В дальнейшем процесс изготовления ИС сводится к формированию в изолированных участках различных элементов структуры (диодов, транзисторов, резисторов) и к созданию на поверхности металлической разводки, соединяющей эти элементы определенным образом друг с другом. На рис. 59 представлена последовательность основных технологических операций, позволяющих сформировать, например, диод, транзистор и резистор. Пластина с изолированными карманами подвергается термическому окислению (рис. 59, а). В слое окисла при помощи фотолитографических методов вытравливаются отверстия необходимой формы и осуществляется селективная диффузия бора [c.99]


    Термическое окисление кремния является одним из наиболее технологичных и широко применяемых на практике методов. Этот процесс проводят в ра,зли чных окислительных средах сухом и увлажненном кислороде, водяном паре при атмосферном и повышенном (до 500 атм) давлениях. Часто используют комбинированные режимы окисления, приводящие к образованию беспористых окисных слоев сравнительно большой толщины с хорошими электрическими свойствами, которые, к тому же, можно варьировать в определенных пределах. Иногда для ускорения термического окисления прибегают к использованию активаторов. Как правило, термическое окисление проводят в проточных системах, но иногда используют и оксидирование в герметичных реакторах, выдерживающих высокие давления. Однако эти способы не лишены некоторых недостатков. Так, при создании толстых (2 —3 мкм) изолирующих пленок (при изготовлении ИС с диэлектрической изоляцией) эти методы неприемлемы, поскольку уже при толщине окисла порядка 1,5 мкм скорость роста пренебрежимо мала. Методы термического окисления невозможно применить и при пассивации готовых структур из-за температурных ограничений (не более 500°С при применении алюминиевой разводки), [c.110]

Рис. 62. Распределение концентрации кислорода в переходном слое на границе 51—5102 а — первичный хемосорбционный слой б — пиролитическое осаждение 5 Оз в — термическое окисление Рис. 62. <a href="/info/30656">Распределение концентрации</a> кислорода в <a href="/info/311624">переходном слое</a> на границе 51—5102 а — первичный <a href="/info/1596928">хемосорбционный слой</a> б — пиролитическое осаждение 5 Оз в — термическое окисление
    Рнс. 64. Линеаризация кинетических кривых термического окисления кремния [c.113]

    Процесс термического окисления H S осуществляют в основ — Hof топке, смонтированной в одном агрегате с котлом — утилизато — ром. Объем воздуха, поступающего в зону горения, должен быть строго дозирован, чтобы обеспечить для второй стадии требуемое соотношение SO и H S (по стехиометрии реакции 2 оно должно быть 1 2). Температура продуктов сгорания при этом достигает 1100 — 1300 °С в зависимости от концентрации H S и углеводородов в газе. [c.165]

    Термическое окисление становится заметным при 400° С, однако при температуре ниже 575° С процесс протекает медленно. В течение индукционного периода происходит экспонентное возрастание концентрации формальдегида до стационарной величины. Вслед за индукционным периодом происходит быстрая реакция, основными продуктами которой являются окись углерода и вода. Путем добавления к газовой смеси формальдегида можно частично или полностыо сократить продолжительность индукционного периода если же добавить формальдегид в таком количестве, чтобы концентрация его превысила стационарную, скорость быстрой реакции также соответственно увеличится и формальдегид будет разрушаться до тех пор, пока снова не установится нормальная стационарная концентрация его. Важная роль формальдегида в процессе окисления подчеркивается также следующим наблюдением если реакционную смесь метана и кислорода подвергнуть при 485° С сильному облучению ультрафиолетовым светом с длинами волн в интервале от 2400 [c.321]

    Так как формальдегид в интервале температур, при которых происходит достаточно быстрое окисление метана, легко разлагается под действием кислорода или свободных радикадов, то концентрация его в реакционной смеси всегда остается низкой и, следовательно, процесс термического окисления метана непригоден для получения формальдегида. [c.323]

    Для алкилпроизводных дифенилолпропана основным направлением использования является стабилизация различных материалов. /прет-Бутилзамещенные дифенилолпропана могут быть использованы как неокрашивающие антиоксиданты каучуков " , турбинного масла и крекинг-бензина . Добавки 2,2-бис-(3 -бутил-4 -окси-фенил)-пропана и 2,2-бис-(3 -изопропил-4 -оксифенил)-пропана к полиэфиру делают последний устойчивым к термическому окислению стабилизованный таким же образом полиэтилен является нетоксичным и может быть использован для упаковки пищевых продуктов . 2,2-Бис-(3 -трет-бутил-4 -оксифенил)-пропан является хорошим неокрашивающим антиоксидантом для полистирола, бактерицидным агентом, а также может быть использован для синтеза смол типа фенол о-формальдегидных 2. [c.56]

    Следовательно, при разных условиях обрыва цепи зависимость скорости от парциального давления кислорода изображается кривой с насыщением (рис. 103), обычно наступающим при давлении гПа. Из по, уче1шы завпсимо-стей видно, что при термическом окислении в жидкой фазе для интенсификации начальной стадии окисления выгодно добавлять в исходную смесь готовый гпдропероксид, что широко применяют на практике. [c.364]

    Принципиальная схема термического окисления циклододекана в присутствии борной кислоты изображена на рис. 115. Борная кислота и циклододекан поступают в смеситель 1, где готовят суспензию этих веществ. Она стекает в колонну 2, где при 150—200 °С ведут окисление воздухом, обедненным кислородом за счет циркуляции асти отходящего газа после холодильника 3. Оксидат поступает на отгонку непревращенного углеводорода в колонну 4, в кубе когорой остаются эфиры борной кислоты, кетон и побочные продукты окисления. Их перекачивают в гидролизер 5, где прн подаче юды и перемешивании происходит гидролиз эфиров борной кислоть . В сепараторе 6 отделяют органический слой от водного и напргвляют на ректификацию с выделением спирта, кетона и тяжелого остатка. Водный слой подвергают переработке с целью регенерации Н3ВО3 (на схеме не изображено) упаривают, кристаллизуют и отфильтровывают Н3ВО3, возвращая ее в аппарат 1. [c.391]

    Термическое окисление аммиака кислородом (без применения специальных катализаторов) протекает с измеримой скоростью только при температурах выше 300° С. Температура начала окисления аммиака в основном зависит от материала стенок реактора, которые, вероятно, оказывают каталитическое действие. При термическом окислении аммиака образуется вода и азот со Следами окиси азота. В присутствии катализаторов это окисление можно регулировать соответствующим подбором температуры и объемной скорости таким образом, чтобы получать либо закись, либо окись азота. Так при окислении аммиака на окисном марганцевом катализаторе нри температурах до 250° С образуется только азот и закись азота NjO. Дальнейшее повышение темнерату ры приводит к образованию окиси азота N0. На смешанном катализаторе (45% СиО -Ь 45% MnOj -h -Ь 10% СаСОз) ДО 350° С также образуется только азот и закись азота. При повышении температуры появляется окись азота, а доля азота и закиси азота снижается. На других катализаторах и в области более высоких температур ( 600° С) закись азота не образуется, но получаются одновременно окись азота и азот в различных соотношениях. [c.155]

    В настоящее время фирма Ситиз сервис , по-видимому, также проводит окисление пропана и бутана по процессу, аналогичному методу фирмы Силениз корпорейшн оф Америка . Эта последняя фирма осуществляет некаталитическое (термическое) окисление пропана и бутана воздухом при 350—450° и давлении 3—20 ата углеводород берут в избытке. Бутан реагирует легче, чем пропан, и им предпочитают пользоваться как исходным сырьем. Продукты реакции разделяют на конденсат, состоящий из водного раствора органических кислородных соединений, и на неконденсирую-щиеся отходящие газы, которые возвращают в процесс. Часть отходящих газов выводят из системы, чтобы предотвратить накопление в ней инертных примесей однако из этих сбрасываемых газов выделяют пропан и бутан, возвращаемые в систему. Превращение углеводородов составляет 100%i. Не менее 15—20% углеводородов сгорает до окислов углерода и воды. Получаемая смесь органических соединений имеет сложный состав в нее входят формальдегид, метиловый спирт, ацетальдегид, уксусная кислота, н-пропиловый спирт, метилэтилкетон и окиси этилена, пропилена и бутилена. По этому методу работают заводы в г. Бишопе (шт. Техас) и г. Эдмонтоне (Канада). [c.72]

    Муханов В.А. Термическое окисление алмаза ..............................148 [c.13]

    Муханов В.А. Термическое окисление графита ............................150 [c.13]

    Проведено изучение термического окисления порошков алмаза на воздухе при температурах 500-750 С на дериватографе Orion на плоских платиновых чашках диаметром 18,5 мм, навески алмаза составляли 100 мг. Время выхода на режим (15 /мин) = 40 минуг, выдержка 2 часа. [c.148]

    Проведено изучение термического окисления порошков графита на воздухе при температурах 500-760 С на дернватофафе Orion на плоских платиновых чашках диаметром 18,5 мм, навески фафита с активаторами окисления 40 мг. Время выхода на режим (15°/мин) = 40 минут, выдержка 2 часа. [c.150]

    Химические превращения. К числу химических превращений, которые могут быть изучены с помощью ДТА, относятся процессы полимеризации и химические реакции в полимерах, такие, как сшивание, изомеризация, термическое окисление и деструкция. Все эти процессы экзотермичны, кроме последнего деструкция сопоовождастся иоглощеьием тепла. [c.110]

    Известны два ряда характеристических оксидов и гидроксидов, отвечающих степеням окисления Э (+2) и Э (-f4). При нагревании простых веществ на воздухе образуются диоксиды германия и олова —GeOa и SnOa,— но монооксид свинца РЬО. Оксиды ОеОи SnO менее стабильны. GeO является полупродуктом термического окисления германия при сравнительно низких температурах (порядка 600 С) и обладает повышенной летучестью (сублимирует при 710 °С). Тем не менее низший оксид германия существенно более стабилен, чем оксид кремния SiO, который термодинамически устойчив только в виде пара при температуре выше 1200 °С. Оксид олова получают, наиример, взаимодействием растворов солей Sn (+2) со щелочью  [c.221]

    Наиболее типичной степенью окисления молибдена и вольфрама и одной из важнейших для хрома является +6. Как отмечено выше, М0О3 и WO,i получаются непосредственным термическим окислением металлов газообразным кислородом. СгОз непосредственно из элементов получить нельзя. Он кристаллизуется в виде ярко-красных игл при действии на раствор дихромата калия КгСг О, концентрированной серной кислотой  [c.339]

    Мелкодисперсный металл в кислороде сгорает при нагревании до образования Рез04, который является самым устойчивым оксидом железа. Термическое окисление кобальта и никеля протекает при более высоких температурах. При этом образуются в основном [c.402]

    В современной технологии полупроводниковых приборов особое значение имеют методы химического воздействия на исходный кристалл кремния, которые позволяют формировать в нем разнородные области п- и р-типа, окисленные участки поверхности и т. п.), являющиеся активными и пассивными элементами структуры. К этим методам прежде всего относятся отмывка и травление, служащие для удаления с поверхности примесей и нарушенного слоя, вызванного механической обработкой, создания определенного рельефа на поверхности пластины и т. п. формированне стеклообразных пленок на основе 810а, полученных или методами термического окисления, или осаждением из газовой фазы в результате химической реакции. Важную роль в технологии играют методы эпитаксиального наращивания, позволяющие создавать слоистые монокристаллические структуры с разнообразными электрофизическими свойствами. Непременным этапом физико-химической обработки кристалла при изготовлении прибора служит диффузия примесей донорного и акцепторного типов, при П0М01ДИ которой формируются области эмиттера и базы в транзисторах, резисторы и другие элементы интегральной схемы. [c.96]

    Образование переходного слоя в процессе прямого термического (и анодного) окисления кремния представлено на рис. 62, в. Переходный слой формируется не на исходной поверхности подложки, а под ней за счет диффузионно-химических процессов при этом граница раздела Si—SiOj продвигается в объем кристалла, в то время как при осаждении окисла из газовой фазы координата границы постоянна. Вследствие этого при термическом окислении формирование пограничного переходного слоя происходит в более стерильных условиях — во внутренних областях кристалла, а примеси, сорбированные исходной поверхностью подложки, кроме щелочных металлов, оттесняются в толщу оксида. Толщина переходного слоя между термическим окислом и подложкой значительно больше, чем при осаждении Si02 из газовой фазы. Поэтому различие коэффициентов термического расширения кремния и ЗЮг при прямом окислении не влияет на адгезию, поскольку термические напряжения постепенно гасятся в переходном слое. К тому же в пределах переходного слоя коэффициент линейного расширения непрерывно изменяется в сответствии с непрерывным изменением концентрации анионообразователя. [c.112]


Смотреть страницы где упоминается термин Термическое окисление: [c.165]    [c.222]    [c.379]    [c.141]    [c.199]    [c.147]    [c.113]    [c.113]   
Смотреть главы в:

Проектирование аппаратов пылегазоочистки -> Термическое окисление

Проектирование аппаратов пылегазоочистки -> Термическое окисление

Физико-химические основы получения, переработки и применения эластомеров -> Термическое окисление

Химия и технология термостойких неорганических покрытий -> Термическое окисление

Химические превращения эластомеров -> Термическое окисление


Свойства и химическое строение полимеров (1976) -- [ c.359 ]

Свойства и химическое строение полимеров (1976) -- [ c.359 ]




ПОИСК







© 2025 chem21.info Реклама на сайте