Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа устойчивости определение полярографическое

    При исследовании комплексонов значительную роль играют реакции вытеснения, в которых происходит вытеснение одного комплексообразователя другим (стр. 50—52) или одного связанного в комплекс катиона другим (стр. 76). Второй случай является основным полярографическим методом определения констант устойчивости комплексонов, но он может быть также использован для анализа. Из полярографически невосстанавливающихся комплексонатов можно вытеснять в аммиачном растворе связанные с ними ионы. Когда применяются ионы кальция, этот способ как будто противоречит законам о равновесии в растворах комплексных соединений, так как вытесненные катионы образуют более устойчивые комплексы с этилендиаминтетрауксусной кислотой, чем кальций. Этот сдвиг равновесия объясняется, однако, присутствием в растворе аммиака, так как в результате вытеснения ионов из комплексоната образуются не свободные катионы, а соответ- [c.233]


    В случае очень устойчивых комплексов, характеризующихся очень малыми скоростями достижения равновесия реакции образования комплекса или его распада, для определения констант устойчивости можно использовать полярографическое исследование реакции вытеснения. Этот метод развили Шварценбах и сотр. [23—25]. [c.406]

    Полярографическое поведение комплексных соединений характеризуют два крайних случая, которые также положены в основу методов определения состава комплексов и констант устойчивости [4]. [c.53]

    Общая формула комплексного иона может быть безупречно установлена в случае обратимой электродной реакции, если комплекс в достаточно широкой области концентраций комплек-сообразующего компонента обладает постоянным, стехиометри-чески однозначно определяемым составом. Если в исследуемом концентрационном интервале присутствуют одновременно несколько комплексов, то можно — при условии обратимости электродных реакций — определить суммарные формулы одноядерных комплексов методами, описанными в этой главе. По сравнению с константами, получаемыми потенциометрическими методами, константы устойчивости, определяемые полярографически, несколько менее надежны. Полярографические волны в большинстве случаев имеют не идеальную форму, а в большей пли меньшей степени искажены, что делает определение потенциалов полуволны ненадежным (непостоянство тока насыщения, слишком малая крутизна подъема волны). Определяемые таким образом константы комплексообразования справедливы только для того растворителя, в котором проводились измерения. Исследуемые растворы всегда содержат значительные ко--личества индифферентных электролитов, что сильно сказывается на величинах коэффициентов активности реагирующих веществ. В этом состоит принципиальный недостаток полярографического метода по сравнению с другими методами, при которых не требуется добавки электролитов. Однако, с другой стороны, полярографический метод, как уже указывалось во введении, обладает определенными преимуществами, которые в отдельных случаях могут иметь решающее значение для его применения. [c.250]

    Тип 1. Для определения состава и устойчивости комплексных соединений в растворах наиболее благоприятен первый тип электродных реакций. Методы определения констант устойчивости разработаны для этого случая наиболее подробно. Данные, полученные полярографически, на равных правах с результатами других методов, вошли в справочную литературу по константам устойчивости комплексных соединений 3, 4]. Полярографический метод отличается простотой, достаточно хорошей воспроизводимостью, возможностью измерений в сильно разбавленных растворах. Уравнения, позволяющие установить состав комплекса в расгворе и определить его константу устойчивости (Р) по результатам полярографических измерений, хорошо известны [5]. [c.71]


    Последовательные константы устойчивости комплексов, определенные полярографически [c.140]

    Систематические исследования по определению констант устойчивости в смешанных растворах проводили Турьян и сотрудники [117—122] полярографическим методом. Они определили состав и устойчивость галогенидов и роданидов кадмия, свинца и др. в водных, водно-метанольных и водно-этанольных растворах. [c.500]

    Помимо химического анализа полярографический метод находит применение в некоторых физико-химических исследованиях, например, для определения констант устойчивости комплексных соединений, констант произведения растворимости и др. [c.442]

    Полярографическое определение констант устойчивости оксалатных двухвалентных меди и кадмия в легкой и тяжелой воде. [c.537]

    Константы устойчивости нитрилтриуксусной кислоты, определенные полярографически [c.59]

    В полярографии неорганических соединений такую же важную роль в определении положения и природы полярографической волны играют координационные числа и константы устойчивости комплексов ионов металла [14]. На рис 2.9 показана постояннотоковая полярограмма 8п" в 1 М растворе НаР. На ней видна волна двухэлектронного восстановления и волна двухэлектронного окисления. Токи, соответствующие процессам восстановления и окисления, имеют разные знаки. [c.32]

    Общие константы устойчивости галогенидных комплексов РЬ(П) Рг(М"0. определенные полярографическим и другими методами при 25 С (183) [c.107]

    Константы устойчивости комплексов, рассчитываемые из зависимости Е / от [X ] по уравнениям (IV.7 ) и (IV.74), согласуются с результатами, полученными другими методами, в частности потенциометрическим, когда образующие комплексы лиганды не склонны к сильно выраженной специфической адсорбции на поверхности ртутного электрода. Об этом свидетельствуют, например, значения констант устойчивости фторидных и хлоридных комплексов РЬ (II), определенные полярографическим и другими методами,. которые приведены в табл. IV. 1. [c.107]

    Общ,ий случай восстановления комплексов как обратимого (см. гл. VIH), так и рассмотренного выше полностью необратимого восстановления был изучен Мацудой и Аябе [176]. Для обратимых процессов могут быть определены и число лигандов у комплекса, преобладаюш,его в растворе, и его константа устойчивости для полностью необратимого процесса, однако, состав разряжающегося комплекса может быть определен лишь в том случае, если известен состав комплекса, преобладающего в растворе. Для квазиобратимых процессов из полярографических данных можно определить как число лигандов комплекса, преобладающего в растворе, так и состав разряжающегося комплекса можно также найти константу устойчивости комплекса и определить кинетические параметры электродного процесса, т. е. коэффициент переноса а и его константу скорости. [c.197]

    Для определения свободной концентрации лиганда в систе мах В, 23, А используются и другие экспериментальные методы Например, если вспомогательная центральная группа 58 вое станавливается обратимо на капельном ртутном электроде при более положительном потенциале, чем требуется для восстановления В, то свободную концентрацию лиганда можно получить полярографически при условии, что потенциал полуволны системы А был определен заранее как функция от а (см. гл. 8, разд. 3, В). Значение а может быть найдено также из измерений растворимости труднорастворимого комплекса 23Ас в растворе, содержащем В, при условии, что известны значения произведения растворимости 23Ас и константы устойчивости 93А (см. гл. 9, разд. 3, А). Значения с(с>0) и, следовательно, а можно определить спектрофотометрически, если ЙАс является единственной формой, которая заметно поглощает при используемой длине волны (см. гл. 13, разд. 1,Г). Аналогично использовался биологический кинетический метод (см, гл. 14, разд. 1,А) для определения концентрации свободных ионов кальция при исследовании цитратных комплексов магния и стронция [27]. [c.86]

    Электровосстановлению на ртутном капающем электроде могут подвергаться не только простые, но также и комплексные ионы металлов. Потенциалы полуволн комплексных ионов металлов смещаются к более отрицательным значениям относительно потенциалов простых ионов. Величина этого смещения является функцией концентрации лигандов, а также устойчивости образующегося комплекса, что позволяет пользоваться полярографическим методом как для определения констант нестойкости комплексов, так и для выяснения их состава. Вполне естественно, что это возможно только при условии, что на сдвиг потенциалов полуволн не влияют другие факторы — необратимость диссоциации комплексов, необратимость их восстановления и др. Правда, случаи необратимого восстановления комплексов встречались до последнего времени в литературе не так часто. [c.19]

    Для определения констант скоростей, превышающих 10" см-с , полярографический метод не пригоден, но он может давать важную термодинамическую информацию (стандартные электродные потенциа лы и вычисляемые по ним данные по свободной энергии и констан там устойчивости). Существует обширная литература по электродным потенциалам различных органических и неорганических окислительно восстановительных пар, основанная на потенциалах полуволны как в водных, так и в неводных растворах. Однако в некоторых случаях возникает вопрос, является ли окислительно-восстановительная пара достаточно обратимой, чтобы потенциал полуволны определялся выражением для обратимых волн [c.216]


    Полярографический метод для определения констант устойчивости применяли Торопова, Турьян, Мигель, Гринберг и др. Торопова [104—107] определила константы устойчивости комплексов с лигандами, содержащими селен и серу. [c.500]

    К очень устойчивым комплексным соединениям этот метод применить нельзя в этом случае применяется анализ кривых титрования комплексона в присутствии иона металла и р, /8, б"-трис-аминотриэтиламина, который в щелочной среде вытесняет комплексов из комплексного соединения [3]. Равновесие в растворе комплексного соединения можно также изучать полярографически, так как в определенных условиях комплекс и свободный ион металла образуют отдельные волны [4]. При определении констант устойчивости оказалось пригодным полярографическое исследование равновесий, при которых происходит вытеснение из комплекса одного иона другим [5, 6]. Определение констант устойчивости в некоторых случаях можно проводить потенцио-метрически, определяя активности свободного иона металла с помощью амальгамированных электродов [5] или определяя окислительно-восстановительный потенциал системы, состоящей из ионов различной степени окисления [7]. Окислительно-восстановительный потенциал можно, разумеется, определить во Многих [c.38]

    В амперометрии измеряется диффузионный ток при соответствующем приложенном потенциале и уравнение (8-1) непосредственно, применяется для определения концентрации какой-либо формы. С другой стороны, в полярографии ток измеряется как ( )ункция приложенного потенциала и определяется для полярографической полуволны. Пуш [57] определил константу диссоциации карбоновой кислоты амперометрическим методом в 1916 г. Однако химики много лет не признавали ам-перометрию, и этим методом было определено лишь несколько констант устойчивости. Полярография была разработана приблизительно в 1920 г. Гейровским, который вскоре оценил ее применимость для изучения ионного равновесия [18]. Тем не менее вплоть до 1950 г. не делалось никаких попыток строгого полярографического определения ступенчатых констант устойчивости [8, 60]. Метод можно применять непосредственно только к строго ограниченному ряду ионов металлов, но об- [c.212]

    Мнгаль и сотрудники [108—114] выполнили ряд работ по определению констант устойчивости полярографическим методом. В работе [108] найдены состав и устойчивость комплексов меди, свинца, цинка с моноэтаноламином. Свинец и цинк в присутствии моноэтаноламина восстанавливаются обратимо, в то время как медь в тех же условиях восстанавливается необратимо. Ряд исследований [109, 112] выполнен в смешанных водно-этанольных и водно-метанольных растворах. Гринберг и Ми-галь методами Яцимирского, Дефорда и Юма рассчитали константы устойчивости аквокомплексов кадмия, цинка и свинца. На основании характера зависимости Еч от lg HjO и функций Fq(x), Fi[x) и F2(x) от (НгО) сделан вывод о ступенчатом характере пересольватации изученных комплексных ионов. Обратимость электродных процессов определялась по величине угловых коэффициентов зависимости E l — lg -у, а природа [c.500]

    Найдено [1], что медь дает с ОЭИДА хелаты состава uL и uLj Впервые изучено полярографическое поведение меди в растворах ОЭИДА. С целью определения констант устойчивости комплексов меди с ОЭИДА и получения дополнительной информации о характере равновесий в растворах, проведено потенциометрическое (рН-метрическое) титрование растворов с соотношением компонентов Сси Нг1-= 1 1 и 1 2. Найдено, что наряду с uL образуется комплекс, содержащий в качестве лиганда протоииро-ванную частицу ОЭИДА. [c.277]

    Однако потенциал полуволны существенно зависит от среды, природы и концентрации фонового электролита. Особое значение имеет наличие в растворе веществ, способных к комплек-сообразованию с определяемым ионом. Присутствие в исследуемом растворе лиганда смещает потенциал полуволны в отрицательную область, что используется для определения состава и констант устойчивости координационных соединений. Сдвиг потенциала полуволны при введении в раствор лиганда значительно расширяет возможности полярографического анализа, позволяя создавать условия для определения нескольких компонентов в одном растворе без их предварительного разделения. Например, в 1 М КС1 ионы свинца (И) и таллия (I) имеют потенциалы полуволны, соответственно, —0,435 и —0,483 В и на этом фоне их раздельное определение неосуществимо. В 1 М NaOH потенциал полуволны свинца становится равным [c.223]

    Для определения равновесных концентраций лиганда, свободных ионов металла или какого-либо комплекса используют потенциометрический и полярографический методы, метод измерения давления пара (для таких лигандов, как NH3, С0 ), метод, основанный на изучении распределения ионов металла, лиганда или комплекса между двумя несмещи-вающимися растворителями, и другие методы. Имеется ряд методов, позволяющих рассчитывать значения констант устойчивости комплексов на основании наблюдаемых изменений какого-либо физико-химического свойства системы (оптические методы, измерение электропроводности). Описание различных методов, используемых при изучении состава и устойчивости комплексов металлов, можно найти в ряде монографий и статей [1—9]. Основные принципы потенциометрического и полярографического методов определения состава и констант устойчивости комплексов металлов излагаются в гл. 2 и 5. [c.14]

    Непосредственное определение величины ° ы1 /№(не) с помощью анодно-катодной хроновольтамперометрии в некомплексообразующем фоновом электролите было проведено Галюсом и сотр. [126, 127] (табл. 1.2). Эти данные и результат полярографического определения [52] на основе уравнения (1.104) с использованием констант устойчивости роданидных комплексов никеля в тех же условиях (Na 104 + NaS N = 3,0 М) достаточно сопоставимы (табл. 1.2). Это говорит о том, что состояние амальгамы никеля при полярографическом исследовании в комплексообразующем фоне, содержащем роданид-ионы (НаЗСМ), практически идентично состоянию амальгамы в некомплексообразующем фоне. Несколько более отрицательное значение ° № /№(Н8) в 2,5 М Са(С104)2 (табл. 1.2) является, по-видимому, результатом кинетического торможения в концентрированном некомплексообразующем электролите [144]. Последнее полностью устраняется — наличие предельного диффузионного тока — в присутствии достаточно больщой концентрации роданид-ионов [52], хотя и общая ионная сила раствора была высокой (3,0 М). [c.42]

    Таким образом, полярографический метод, как и потенциометрический, позволяет определять константы устойчивости комплексов, одновременно присутствующих в растворе. Однако в связи с тем, что точность измерений потенциалов полуволн, обычно не превышающая 1—2 мв, значительно уступает точности измерений потенциалов при потенциометрических измерениях, последние более предпочтительны при определениях констант устойчивости [11]. Кроме того, рассмотренный выше метод Де Форда и Хьюма может быть использован лишь при анализе обратимых полярографических волн. [c.120]

    Как следует из уравнения (6.2), чем выше донорная сила растворителя (т. е. чем выще устойчивость сольватного комплекса), тем больше должен бьггь избыток лиганда, необходимый для замещения молекул растворителя, находящихся в первой координационной сфере иона металла. Вследствие этого с увеличением донорной силы растворителя устойчивость комплексов в растворе уменьшается. Справедливость всех высказанных положений подтверждена во многих работах по непосредственному определению констант устойчивости, а также и в работах, качественно устанавливающих ряд устойчивости комплексов, например с помощью полярографических потенциалов полуволны [32, 33]. [c.183]

    Из-за трудности количественного учета специфической адсорбции восстанавливающихся на электроде комплексов, участвующих в обратимой электродной реакции, Бонд и Хефтер [191 ] не рекомендуют в подобных случаях использовать полярографический, метод для определения констант устойчивости комплексов. Следует также учитывать, что определение потенциала полуволны полярографических волн обычно сопровождается большими погрешностями (0,5—1 мВ), чем в случае определения равновесных потенциалов 108 [c.108]

Таблица У.2 Константы устойчивости монолигандных комплексов циклических полиэфиров Рх определенные полярографическим Таблица У.2 <a href="/info/10353">Константы устойчивости</a> монолигандных <a href="/info/982014">комплексов циклических</a> полиэфиров Рх определенные полярографическим
    Как следует пз табл. 1, многие металлы (Zn, N1, Со и др.) дают столь сильные сдвиги потенциалов восстановления с этим комп-лексообразователем к отрицательным значениям, что не образуют волн до разряда иона водорода. На большую устойчивость этих комплексов указывает величина К, равная 19. С другой стороны, и Т1 совсем не дают сдвигов потенциала в присутствии комплексона IУ,а Мо и иО дают очень небольшие сдвиги, что связано с отсутствием или только со слабым комплексообразованием этих ионов с комплексоном IV. Таким образом, по величине формальных констант нестойкости различных комплексов можно подобрать такие комплексообразователи, которые позволят наиболее эффективно раздвинуть значения потенциалов восстановления определяемых колшокентив системы. Кстати, следует отметить, что полярографический метод широко применяют для определения констант нестойкости комплексов, восстанавливающихся обратимо [3—5], а также для устаноилеиия [c.362]


Смотреть страницы где упоминается термин Константа устойчивости определение полярографическое: [c.108]    [c.156]    [c.216]    [c.536]    [c.538]    [c.160]    [c.369]    [c.404]    [c.78]    [c.203]    [c.84]    [c.109]    [c.140]    [c.307]   
Комплексоны в химическом анализе (1960) -- [ c.53 , c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Константа устойчивости



© 2024 chem21.info Реклама на сайте