Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атмосферная коррозия олова

    Нормальный потенциал олова — 0,14 в по отнощению к железу олово является более электроположительным, поэтому в условиях атмосферной коррозии олово электрохимически не защищает железо от коррозии. [c.5]

    Атмосферная коррозия олова и его сплавов [c.340]

    Характер развития атмосферной коррозии во времени у разных металлов заметно отличается вследствие неодинаковости защитных свойств образующихся продуктов коррозии. Свинец и алюминий образуют хорошую защитную пленку из продуктов коррозии, и зависимость величины коррозии от времени для этих металлов имеет вид затухающей логарифмической кривой (рис. 138). Защитные свойства продуктов коррозии меди, олова и особенно никеля несколько ниже. Скорость коррозии цинка по мере образования слоя продуктов коррозии сначала уменьшается во времени,. а затем остается постоянной. Для железа в [c.180]


    Применение олова, его сплавов и соединений. Такие свойства металлического олова, как его большая ковкость и пластичность, низкая температура плавления, небольшая твердость, устойчивость к атмосферной коррозии, очень малая токсичность обусловили его широкое применение. Металлическое олово идет главным образом iUi получение белой жести, т. е. луженого железа, устойчивого к коррозии. Из луженой жести изготовляют консервные банки и листы для кровли.зданий. Лудят жесть погружением в расплавленное олово нли гальваническим осаждением металла из щелочных ванн. Из олова производят оловянную фольгу (станиоль), используемую для конденсаторов, а также для упаковки пищевых продуктов и фармацевтических препаратов. [c.191]

    К какому типу покрытий относятся олово на стали и на меди Какие процессы будут протекать при атмосферной коррозии луженых (оловянированных) стали и меди, при нейтральной реакции среды и 298 К Напишите уравнения катодных и анодных реакций, [c.337]

    Из дициклогексиламина готовится один из наиболее эффективных летучих ингибиторов — нитрит дициклогексиламина (НДА), обеспечивающий длительную защиту от атмосферной коррозии стальных изделий (на срок до 10 лети более). На основе дициклогексилами-на готовится также маслорастворимый ингибитор МСДА. Добавка МСДА к маслам и смазкам повышает их защитные свойства в несколько раз и позволяет защищать изделия из стали, чугуна, алюминия, олова, бронзы и латуни в течение трех лет. [c.94]

    Разделение покрытий на анодные и катодные зависит от внешних условий. В условиях атмосферной коррозии олово по отношению к железу является катодным покрытием. Однак о в присутствии органических кислот (консервы) и без доступа кислорода олово по отношению к железу и его сплавам выполняет роль анодного покрытия. [c.423]

    В настоящее время разрабатываются новые виды антикоррозионных бумаг с использованием в качестве ингибиторов других производных нитро- и динитробензойной кислот, таких как нитробензоат цикло- и дициклогексиламина, нитро- и динитробензоат пиперидина, динитробензоат гексаметиленимина, нитро- и динитробензоат диэтиламина, морфолина, гуанидина. Это позволит расширить сырьевую базу производства универсальных антикоррозионных бумаг и обеспечить потребителей упаковочными бумагами, пригодными для защиты от атмосферной коррозии серебра, никеля, олова, алюминия, меди, железа, хромированного цинка и кадмия, оксидированного магния и т. д. [c.126]


    Такие комбинированные упаковочные материалы с ингибитором атмосферной коррозии металлов с успехом применяют для упаковки катушек стальной и алюминиевой проволоки массой до Ют, транспортируемых на поддонах как в вертикальном, так и в горизонтальном положениях. При использовании деревянной ящичной тары указанные материалы применяются для упаковки крупногабаритных стальных листов холодной прокатки, а также прутков из калиброванной стали с блестящей поверхностью. Материал пригоден для упаковки листов, покрытых оловом или другими металлами. В этом случае испаряющийся из бумаги ингибитор эффективно защищает торцы листов, не покрытые оловом. Жестяные ограждения на кромках [c.101]

    Кристаллический порошок светло-желтого цвета, нерастворим в воде. Малотоксичен. Относится к летучим ингибиторам атмосферной коррозии. Температура плавления 230—240° С. Защищает от атмосферной коррозии серебро, никель, олово, оксидированный магний, медь. Не полностью защищает алюминий, кадмий, железо. На упаковочные материалы, деревянную тару, краски, органические покрытия, текстиль, кожу отрицательного действия не оказывает [c.105]

    Перспективны в зтом отношении производные низкомолекулярных аминов типа ИФХАН, летучесть которых достигает 13,3 Па [ 144). Высокая летучесть указанных соединений предъявляет высокие требования к технологическому оформлению процесса производства антикоррозионной бумаги. Первые опытно-промышленные партии антикоррозионной бумаги с использованием в качестве ингибитора ИФХАН-1 в количестве 6—8 г/м показали высокую эффективность защиты от атмосферной коррозии серебра, олова, никеля, алюминия, магния, [c.128]

    Бронзы. Наиболее широко применяют оловянистые бронзы, содержащие 8—14% олова, алюминиевые бронзы с содержанием до-14% алюминия, кремнистые с 2—3% кремния и 1—1,5% марганца. Они не искрят при трении или ударах. Детали из них можна получить методом литья. В условиях атмосферной коррозии бронзы характеризуются высокой стойкостью. Они проявляют коррозионную стойкость в неокисляющих растворах солей и кислот. [c.36]

    Олово устойчиво к воздействию атмосферной коррозии. Скорость проникновения коррозии изменяется от 0,02 мкм в год в сельских районах до 0,1 и 0,25 мкм в год соответственно в атмосфере промышленных объектов и морских условиях. [c.120]

    Подшипники скольжения типа 011 состоят из трех слоев, как показано на рис. 78. Нижний слой из стали, покрытый оловом (для защиты от атмосферной коррозии) средний слой из пористой оловянистой бронзы, полученной при спекании порошкообразной бронзы со стальной основой, заполненной смесью фторопласта-4 и мелкого свинцового порошка, и верхний слой толщиной 0,025 мм из смеси фторопласта-4 и свинца. Промежуточный слой служит для отвода тепла из зоны трения подшипника и его корпуса, фторопластовая смесь обеспечивает постоянную смазку поверхности подшипника при малом износе соприкасающегося с ней слоя материала. [c.143]

    Медь обладает высокой электро- и теплопроводностью, коррозионной стойкостью и отлично переносит горячую и холодную обработку давлением. Она устойчива к атмосферной коррозии. Чистая пресная >ода почти не действует на медь. Скорость коррозии меди в морской воде 0,05 мм/год. В растворах неокислительных солей она стойка. Примеси олова и ртути увеличивают скорость коррозии меди. [c.23]

    Олово устойчиво в разбавленных растворах серной и соляной кислот, в органических кислотах. При повышении концентрации минеральных кислот ускоряется коррозия олова. В азотной кислоте олово сильно разрушается. Неустойчиво оно также в щелочах. Олово устойчиво в атмосферных условиях. [c.212]

    Олово — металл светло-серого цвета с атомной массой 118,7, валентностью 2 и 4, плотностью 7,3 г/сы удельное электросопротивление олова ОД 15 Ом-ым, температура плавления 232 °С. Для олова характерны высокие пластичность и вязкость, твердость оловянных покрытий колеблется от 120 до 200 МПа. Олово устойчиво в воде, не корродирует во влажном воздухе, даже содержащем сернистые соединения В минеральных кислотах скорость коррозии олова в значительной степени зависит от наличия Б растиорах кислорода, который резко увеличивает ее. Примеси с низким перенагряжекием водорода также усиливают коррозию олова. Стандартный электродный потенциал олова —0.14 В по отношению к его двухвалентным нонам и -1-0.01 В н четырехвалентиым. Относительно железа олово электроположительно, поэтому оно не защищает железо от атмосферной коррозии. Электрохимическую защиту от коррозии оловянные покрытия обеспечивают изделиям из медн. Оловянные покрытия — эффективный барьер для серы н азота [22, 31. 37, 44]. [c.83]

    Хромат циклогексиламина, или ХЦА (МРТУ 6-04-144—63), — порошок ярко-желтого цвета. Растворяется в воде, этиловом и метиловом спиртах. 1% водный раствор имеет рН = = 7,5- 8,5. ХЦА предназначен для защиты от коррозии стали, чугуна, меди и ее сплавов, никеля, олова, алюминия и его сплавов. Используется в виде порошка или ингибированной бумаги. Порошок распыляют на поверхности металла из расчета 10—12 г/м . Содержание ингибитора в бумаге составляет 18—20 г/м . Как и в других случаях применения летучих ингибиторов атмосферной коррозии, после распыления порошка или обертывания в ингибированную бумагу изделия помещают в герметичные чехлы. В таких условиях ингибитор может защищать металлы до 5 лет. [c.152]


    Олово. Оловянные покрытия, полученные химическим способом, обычно имеют толщину, не превышающую 1 мкм, и потому не пригодны для защиты деталей от атмосферной коррозии. Их можно использовать для улучшения паяемости мелких деталей мягкими припоями с бескислотными флюсами, если при эксплуатации они не испытывают сильного коррозионного воздействия. Выделение олова на поверхности обрабатываемого металла, например меди, происходит при погружении ее в такой раствор соли олова, в котором потенциал меди более электроотрицателен, чем материал покрытия. Изменению потенциала в нужном направлении способствует введение в раствор соли олова комплексообразующей добавки тиокарбамида, цианида щелочного металла. Такого типа растворы имеют следующий состав (г/л) и режим эксплуатации  [c.221]

    Карбонат моноэтаноламина защищает от коррозии только черные металлы. Цветные металлы (мель, никель, хром, цинк, олово и др.) интенсивно разрушаются карбонатом моноэтаноламина. При защите от атмосферной коррозии стальных или чугунных изделий (черные метал-,чы), включающих отдельные детали из цветных металлов, Э/Ти детали должны быть надежно изолированы от действия моноэтаноламина. [c.184]

    Недостаток летучих ингибиторов — прекращение их действия после удаления их паров из атмосферы, окружающей металл. Кроме того, многие летучие ингибиторы, тормозя коррозионное разрушение стали, вызывают коррозию цветных металлов (олова, цинка, меди, латуни, кадмия). Несмотря на это, области применения ингибиторов атмосферной коррозии достаточно разнообразны. [c.181]

    Олово устойчиво в атмосфере, даже сильно загрязненной кислыми газами и содержащей много влаги. Белая жесть во влажном загрязненном воздухе быстро разрушается, вследствие того что в слое олова всегда есть поры, т. е. участки обнаженного железа. В условиях атмосферной коррозии потенциал железа отрицательнее, чем олова и в атмосфере, содержащей много влаги, гальваническая пара железо — олово интенсивно работает, причем железо растворяется. [c.95]

    Благодаря безвредности олова покрытие им широко применяется в пищевой промышленности для покрытия консервной тары, пищевых котлов, кухонной посуды, мясорубок и т. д. Как защита черных металлов от атмосферной коррозии оловянные покрытия не применяются .  [c.144]

    Хорошо известны меркаптиды (тиолаты) тяжелых металлов. Из них наиболее распространены соли ртути, меди, серебра, висмута, олова и свинца. Соли свинца, например, издавна используются в зарубежной практике для очистки бензинов от меркаптанов ( докторские растворы ). Меркаптиды серебра могут быть использованы для получения серебряных поверхностей с хорошей электропроводностью на керамике. Имеются сведения о применении фторсодержащих меркаптанов в виде защитных пленок, предохраняющих металлы от атмосферной коррозии. Металлические соли некоторых аминомеркантаносоединений применяются в качестве, медицинских препаратов. [c.29]

    Благодаря большой ковкости и пластичности, низкой температуре плавления, малой твердости, невысокой химической активности (устойчивости к атмосферной коррозии) и очень незначительной токсичности металлическое олово находит широкое применение. Его применяют в производстве станиоля (для упаковки пиш евых продуктов, фармацевтических препаратов и т. д.), для изготовления труб, коробок (для фармацевтических препаратов), змеевиков (применяемых во многих дистилляционных аппаратах), для лужения жести или изделий из железа и латуни и т. д. Из олова делают также сплавы для пайки, для подшипников, для заш,иты от коррозии (они легкоплавки и трудно окисляются). Олово входит в состав типографских сплавов, бронз и некоторых видов латуни. Его применяют также в качестве восстановителя (в присутствии кислот) или катализатора в процессе хлорирования многих веществ. [c.405]

    Физические и химические свойства. Металлический Ц, серебристобелый металл, очень твердый, хорошо сопротивляющийся атмосферной коррозии. Т. плавл. 1930°, т. кип. около 2500°. Уд. вес 6,53. Раств. в плавиковой кислоте и царской водке и медленно в других нагретых концентрированных минеральных кислотах. Нераств. в разбавленных щелочах и кислотах. Дает сплавы со всеми металлами, за исключением свинца и олова. Известны две модификации Ц. — а и р. Модификация а переходит в р при 862°. Окисляется на воздухе при накаливании. Тонкая лента Ц. загорается от спички. Порошкообразный Ц. — черный, легкий, рыхлый, в 8—10 раз легче сплавленного. Ц. отличается большой химической активностью. Вспыхивает при нагревании до 210—275°. Обладает химическим сродством к кислороду, азоту, сере, фосфору, водороду и к другим вредным для качественных металлов элементам. [c.376]

    Олово в большинстве случаев имеет более электроположительный потенциал, чем железо, а потому по своим электрохимическим свойствам относится к катодным (механическим) за-ш[итникам железа и его сплавов от коррозии. Это значит, что в условиях, например, обычной атмосферной коррозии олова может защищать железо только в случае полного отсутствия пор в покрытии. Следовательно, по экономическим и техническим соображениям для защиты от атмосферной коррозии более целесообразно применять, например, цинковые покрытия. Однако, некоторые исследователи установили, что при взаимодействии с рядом органических кислот или консервированных пищевых продуктов олово является анодом в паре с железом, т. е. становится в этих средах для железа электрохимическим защитником от коррозии. [c.255]

    Важно отметить, что введение в состав латуни олова, уменьихающего процесс обесцинкования в морской воде, оказывает благоприятное влияние и иа атмосферную коррозию. [c.299]

    Электролитический сплав 5п—2п, содержащий 80% 5п и 20% 2п, отличается высокими защитными свойствами в условиях атмосферной коррозии. В промышленной атмосфере оловянно-цинковые покрытия разрушаются меньше, чем цинковые покрытия. Этот сплав проявляет анодный характер защиты стали от коррозии и обладает меньшей пористостью, чем покрытия чистым оловом. При малом срдержании цинка в сплаве ( 10%), так же как и при содержании его более 50 %, покрытие сплавом теряет свои преимущества перед покрытием чистыми металлами. Важным достоинством этого сплава является способность к пайке, которая сохраняется длительное время [5, 53, 54]. В соответствии с ГОСТ 14623-69 этот сплав может применяться в очень жестких условиях эксплуатации. Имеются сведения о применении в США автоматических линий [55] для электроосаждения сплава 2п— 5п. Практическое применение получил щелочно-цианистый электролит, в котором оба металла присутствуют в виде комплексных соединений олово в виде станната, а цинк в виде цианистой соли. [c.213]

    Цинк наносят на изделия из стали и чугуна с целью защиты их от атмосферной коррозии, воды и ряда нейтральных растворов солей. Его наносят на тонкостенные изделия (баки, ведра и т. д.), трубы, листы, проволоку при температуре 440—460°С. Добавка в расплавленный цинк олова усиливает блеск покрытия, а алюминия — повышает способность покрытия изгибаться. В настоящее время 807о цинка от общего количества цинка, используемого на покрытия, расходуется на горячее цинкование. [c.116]

    Впервые о летучих ингибиторах атмосферной коррозии упоминается в английском патенте (принадлежащем фирме Шелл), в котором были предложены летучие соединения, содержащие ионы нитрита и органического основания. Давление паров этих соединений должно быть в пределах 0,0002—0,001 мм рт. ст. прн 2 В качестве органического основания можно использовать первичные, вторичные, третичные и четвертичные аммониевые основания, а также аналоги аммониевых осповани общей формулы КХН,у. (где К—органический радикал—алкил, циклоалкил, арил, аралкил или гетероциклическая группа X—атом фосфора, мышьяка, сурьмы, углерода, кислорода, серы, селена, олова, иода у колеблется от 2 до 4, в зависимости от валентности атома X). Примером такого соединения является нитрит триметилсульфонпя. [c.156]

    Выбор металла покрытия определяется в основном условиями службы изделий цинк—для предохранения железа и стали от атмосферной коррозии, кадмий — для предохранения металлической поверхности, подверженной действию морской атмосферы, алюминий — в нефтяной промышленности, а также в топочном хозяйстве для защиты железа и стали от действия высоких температур, олово — в молочной, пищевой и винной промышленности, 1медь — в электротехнической промышленности при покрытии бакелитовых изделий, а также бумаги, угольных щеток и других материалов, сталь нержавеющая — при производстве насосов в нефтяной промышленности и пр. [c.203]

    На качество покрытия оказывает влияние добавка к расплавленному цинку алюминия в количестве не более 0,3% уменьшается растворимость железа в цинке и потому снижается относительная толщина слоя железоцинкового сплава в покрытии кроме того, алюмнний способствует образованию блестящих покрытий и повышает устойчивость их в условиях, атмосферной коррозии. Вязкость расплава уменьшается при небольших добавках олова. Кадмий в расплаве уменьшает спо- [c.148]

    Повышение влажности воздуха в отсутствие загрязняющих газов или пыли приводит к возрастанию скорости окисления [14а] и может вызвать пожелтение металла. В обычной неочищенной атмосфере на олове могут появляться некоторые продукты коррозии. Продукты коррозии олова не гигроскопичны, и поэтому при влажности менее 100% коррозия не ускоряется, если на поверхность не попадает гигроскопичная пыль и гигроскопичные продукты не возникают из-за присутствующих в металле примесей. В помещении, в лабораторной атмосфере, не содержащей особых загрязнений, на олове образуется серая пленка, масса которой линейно возрастает со временем (0,004 г/(м -сут) [15]. Если с поверхностью ничего не делать, то ее отражательная способность медленно ухудшается, но регулярная промывка позволяет сохранить ее. В одном из экспериментов, где поверхность промывалась через каждые три недели, первые шесть недель было достаточно промывки одной водой, а в дальнейшем приходилось пользоваться и мылом, но отражательную способность поверхности удалось сохранить почти полностью [16]. При испытаниях в Стевенсон Скрин, где образцы находились на воздухе и подвергались всем атмосферным воздействиям кроме дождя, отмечалось некоторое уменьшение скорости коррозии олова со временем [15]. [c.158]


Смотреть страницы где упоминается термин Атмосферная коррозия олова: [c.248]    [c.94]    [c.81]    [c.29]    [c.81]    [c.57]    [c.422]   
Морская коррозия (1983) -- [ c.167 ]

Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосферная коррозия

Олово Коррозия



© 2024 chem21.info Реклама на сайте