Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Германий электроотрицательность

    Германий, так же как углерод и кремний, относится к классу промежуточных элементов, отличаясь еще меньшим значением электроотрицательности, что связано с меньшей, ио сравнению с кремнием, прочностью связи электронов наружного уровня в атоме. Как и кремний, германий не способен к образованию элементарных как положительно, так и отрицательно заряженных ионов. [c.362]

    Широкое распространение получили полупроводниковые соединения. Такие соединения образуются, например, элементами пятой и третьей групп периодической системы, из них большое значение имеет арсенид галлия ОаАз. Ширина запрещенной зоны в подобных соединениях обычно растет со степенью ионности связи и определяется поэтому разницей электроотрицательностей составляющих их атомов. Замещение атомов соединения на атомы примесей с отличными валентностями приводит, как и в случае германия, к п- (например, при замене Аз в ОаАз на атом селена или теллура) или к р-проводимости (например, при замене в том же соединении Оа на Са или Mg). [c.519]


    Выпишите из справочника значения электроотрицательности галогенов и для сравнения германия и сурьмы (типичных амфотерных элементов). На основании этих данных установите, как изменяются неметаллические свойства галогенов с [c.106]

    Элементы углерод С, кремний Si, германий Ge, олово Sn и свинец РЬ составляют IVA группу Периодической системы Д. И, Менделеева. Общая электронная формула валентного уровня атомов этих элементов ns np . Преобладающие степени окисления элементов в соединениях ( + 11) и ( + 1V), По электроотрицательности элементы С и Si относят к неметаллам. Ge, Sn и РЬ — к амфотерным элементам с возрастающим металлическим характером по мере увеличения порядкового номера. Поэтому в соединениях элементов со степенью окисления (IV) связи ковалентны для свинца (И) и в меньшей степени для олова (И) известны ионные кристаллы. В целом устойчивость степени окисления ( + IV) уменьшается, а устойчивость степени окисления ( + 11) увеличивается от С к РЬ. Соединения свинца (IV) —сильные окислители, соединения остальных элементов в степени окисления (И) — сильные восстановители. [c.202]

    Элементы IVА-группы. Эту группу Периодической системы составляют элементы углерод С, кремний Si, германий Ge, олово Sn и свинец РЬ. Электронная конфигурация внешнего уровня их атомов ns np . В соединениях эти элементы проявляют характерные степени окисления (+11) и (+IV). По электроотрицательности и химическим свойствам элементы С и Si относятся к неметаллам, элементы Ge, Sn и РЬ-к амфотерным элементам, металлические свойства которых возрастают при увеличении порядкового номера и уменьшении степени окисления. [c.146]

    Характер химических связей в соединениях кремния и германия обусловлен электроотрицательностью этих элементов. Действительно, располагаясь в центральной части таблицы Менделеева, описываемые элементы обладают средними значениями злектроотрицательностей (см. табл. 1). Таким образом, разность злектроотрицательностей атомов кремния или германия и атомов других элементов не может быть достаточна велика для образования ионных связей (см. 7). [c.92]

    Наиболее благоприятные условия для образования твердых растворов замещения — близкие атомные радиусы обоего рода атомов и одинаковые кристаллические решетки (изоморфность компонентов) у обоих компонентов. Важно, чтобы элементы были близко расположены друг к другу в периодической системе, лучше в одной группе с одинаковым числом валентных электронов, с малым различием потенциалов ионизации и электроотрицательности. Мы знаем уже, что такие твердые неограниченные растворы образуют серебро и золото (г = = 1,44 А у обоих металлов), кремний и германий (rsi = 1,17 А, гое = = 1,22 А). Ограниченные твердые растворы образуются при различии радиусов до 15% (по Юм-Розери). Например, цинк (г = 1,37 А) в меди г = 1,28 А) растворяется до 38,4 ат. %, а кадмий —только до 1,7 ат.% (г = 1,54 А). [c.141]


    Если кислород или другое электроотрицательное вещество химически адсорбируется на поверхности полупроводника л-типа, например на оксиде цинка, на германии и др., то атомы кислорода отбирают электроны от полупроводника и образуют на поверхности отрицательные ионы. Отрицательный заряд ионов кислорода может компенсироваться положительным пространственным зарядом в полупроводнике (в поверхностном барьере). Увеличение адсорбции повышает высоту барьера, из-за чего уменьшается скорость адсорбции и она ограничивается. Поглощение каждого атома кислорода уменьшает поверхностную проводимость полупроводника, так как в нем уменьшается число основных носителей заряда (число электронов). При значительной химической адсорбции кислорода на п-германии в объеме, примыкающем к поверхности, может даже возникнуть р-тип проводимости. Толщина слоя с обращенной проводимостью (инверсионный слой) достигает 1 мкм. [c.251]

    Радиусы атомов элементов IVA-подгруппы закономерно растут с увеличением порядкового номера (табл. 25), энергия ионизации и относительная электроотрицательность уменьшаются. Тем не менее углерод и кремний существенно отличаются по свойствам от остальных элементов подгруппы. Это типичные неметаллы. У германия имеются металлические признаки, а у олова и свинца они преобладают над неметаллическими. Кроме того, углерод и кремний отличаются от других элементов IVA-подгруппы многочисленностью и многообразием химических соединений. Углерод в большинстве кислородных соединений (за редкими исключениями) проявляет степень окисления Ч-4, соединения кремния со степенью окисления +4 также достаточно устойчивы. Но от германия к свинцу прочность соединений, в которых они проявляют степень окисления +4, уменьшается. [c.317]

    Электроотрицательность элементов (в порядке ее убывания) устанавливается следующим условным рядом фтор — кислород — хлор— бром — азот — сера — селен — йод — астатин — водород — углерод — фосфор — мышьяк — теллур — полонии — бор — кремний — германий — сурьма — висмут — бериллий — алюминий — галлий — олово — свинец. [c.26]

    Как указывалось ранее, германий не относится к явно электроположительным элементам, вследствие чего Ое—С-связи имеют низкую полярность и сравнительно устойчивы к атаке полярных реагентов. Связи Се—X, где X — элемент, более электроотрицательный, чем углерод (кислород, азот, галогены), обладают большей реакционной способностью. Другой важной особенностью является неспособность германия образовывать рл—рл двойные и тройные связи, характерные для органических соединений. [c.156]

    Данный порядок совершенно не соответствует значениям электроотрицательностей центральных атомов (ср. 4.1.). Полагают, что резкий скачок реакционной способности при переходе от германия к олову связан с изменением механизма реакции. [c.196]

    Как видно из данных табл, 5 и 6, между отдельными значениями электроотрицательностей германия и олова существуют значительные расхождения. Таким образом, вопрос о том, существует ли определенный порядок значений электроотрицательности элементов группы IV А или нет, до сих пор не решен. [c.226]

    Принимая во внимание индукционный эффект, т. е. влияние электроотрицательности, следует ожидать, что кислоты, содержащие в качестве центрального атома германий, олово или свинец, должны быть слабее, чем соответствующее производное углерода. Однако экспериментальные данные показывают, что кислоты, содержащие 51, Ое или 5п, значительно сильнее. Это обусловлено образованием дативных тг-связей между бензольным ядром и атомом 51, Ое или 5п. Таким образом, становятся возможными резонансные структуры типа [c.227]

    Термохимически энергии связей были оценены и сопоставлены с результатами исследования методом ЯКР на ядрах С1 соединений Ge lg , Sn li и Pb I . Авторы работ [22] высказываются в пользу сделанного ранее вывода [23], что полученные результаты не согласуются с более высокой электроотрицательностью свинца по сравнению с германием и оловом. [c.275]

    По электроотрицательности кремний приблизительно равен олову и занимает последнее место в ряду >Ge>Si ( Sn). Значения электроотрицательностей (ЭО) по Полингу у кремния и германия одинаковы и равны 1,8, в то время как у углерода ЭО = 2,5. Соответствующие значения по Оллреду и Рохову составляют С — 2,5 Ge — 2,02 Si—1,74 Sn—1,72. Если, следуя Полингу, найти разность ЭО кислорода и кремния, то окажется, что эта разность (3,6—1,8= 1,8) отвечает связи, имеющей приблизительно 50% ионности. Это, конечно, весьма грубая оценка тем не менее в неорганической химии принято приписывать атому кремния в группах SIO4 заряд +4, а кислородным атомам — заряд —2. При точных расчетах распределения электронной плотности в силикатах (Фам-Куанг-Зы, 1978) заряды на атомах кислорода получаются значительно меньшими. [c.170]

    Нагревание расплава сопровождается перестройкой ближнего порядка в сторону более плотной структуры и металлизацией связей. Температурный интервал, в котором происходят эти изменения, зависит от прочности сил, обусловливающих рыхлую упаковку атомов в твердом состоянии. Он наибольший у алмаза, кремния и германия. Атомы этих элементов имеют внешнюю электронную конфигурацию П5 р . Их электроотрицательность настолько значительна, что при формировании кристаллических структур тенденция к образованию ковалентных связей путем спаривания электронов в состоянии гибридизации преобладает над стремлением к отделению электронов. Алмаз, кремний и германий образуют тетраэдрическую решетку, в которой каждый атом ковалентно связан с четырьмя ближайшрши соседями. [c.182]


    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Иногда элементы подгруппы германия называют металлами IVA-группы. Формально в их число входит и сам германий. Однако, как известно, германий является типичным полупроводником с преимущественно ковалентной связью, а следовательно, металлом в свободном состоянии быть не может. Тем не менее в большом числе соединений с более электроотрицательными элементами германий выступает в качестве катионообразователя, что с химической точки зрения отражает металлическую природу элемента. В бинарных соединениях с металлами, т. е. элементами, расположенными слева от границы Цинтля, германий — анионообра-зователь, однако все эти соединения обладают металлическими свойствами, что характеризует германий как плохой анионообра- [c.214]

    Соединения с другими неметаллами. Халькогениды элементов подгруппы германия, как и оксиды, образуют 2 ряда монохалькогениды ЭХ и дихалькогениды ЭХ . Низшие халькогениды известны для всех элементов и халькогенов. Все монохалькогениды элементов можно получить как непосредственным взаимодействием компонентов при нагревании, так и пропусканием сероводорода через водные растворы, содержаш,ие ионы +. Дисульфиды германия и олова получают непосредственным взаимодействием компонентов при повышенном давлении пара серы. Все монохалькогениды являются типичными полупроводниками, что свидетельствует о преобладающем вкладе ковалентной составляющей в химическую связь. Кроме того, надо учитывать определенный ионный вклад, обусловленный различием в электроотрицательности, а также нарастание металличности с увеличением порядкового номера компонентов. Сульфиды и селениды германия и олова кристаллизуются в орто-ромбической структуре, а при переходе к соответствующим теллури-дам происходит уплотнение структуры с повышением координационного числа до 6 (структура типа Na l). [c.225]

    ГЕРМАНИЙ (от лат. Oermania-Германия, в честь родины К. А. Винклера лат. Germanium), Ge, хим. элемент IV гр. периодич. системы, ат. и. 32, ат. м. 72,59. Прир. Г. состоит из четырех стабильных изотопов с мае. ч. 70 (20,52%), 72 (27,43%), 73 (7,76%), 74 (36,54%) и 76 (7,76%). Поперечное сечение захвата тепловых нейтронов 2,35-10" м . Конфигурация внеш. электронной оболочки 4i 4p степень окисления -I- 4 (наиб, устойчива), +3, +2 и + энергия ионизации при последоват. переходе от Ge к Ge соотв. 7,900, 15,9348, 34,22, 45,70 эВ электроотрицательность по Полингу 1,8 атомный радиус 0,139 нм, ионный радиус (в скобках указаны координац. числа) для Ge 0,087 нм (6 для Ge - а053 нм(4), 0,067 нм(б). [c.530]

    Элементы углерод С, кремний 81, германий Се, олово 8п и свинец РЬ составляют 1УА-группу Периодической системы Д.И. Менделеева. Общая электронная формула валентного уровня атомов этих элементов пз пр , преобладающие степени окисления элементов в соединениях - -П и +1У. По электроотрицательности элементы С и 81 относят к неметаллам, а Се, 8п и РЬ — к амфотерным элементам, металлические свойства которых возрастают по мере увеличения порядкового номера. Поэтому в соединениях олова(ТУ) и свинца(1У) химические связи коваленты, для свинца(П) и в меньшей степени для олова(П) известны ионные кристаллы. В ряду элементов от С к РЬ устойчивость степени окисления -ь1У уменьшается, а степени окисления -нП — растет. Соединения свинца(1У) — сильные окислители, соединения остальных элементов в степени окисления -ьП — сильные восстановители. [c.168]

    Добавка третьего элемента может по-разному влиять на селективное растворение цинка. Если элемент более электроотрицательный чем цинк, то он должен растворяться с большей скоростью чем цинк, и это ведет к образованию более высокой концентрации вакансий и меньшей стабильности поверхностного слоя на растворяющейся латуни. В противном случае третий компонент накапливается в поверхнос 1Ном слое и его атомы стабилизируют поверхностный слой. Например, введение в -латуни натрия, магния или марганца увеличивает долю селективного растворения за счет фазового превращения в поверхностном слое [5.18]. Присутствие в латунях электроположительных элементов (германия, серебра, золота) уменьшает долю такого разрушения, так как атомы этих элементов выступают в качестве стопоров , которые тормозят поверхностную диффузию атомов меди и тем [c.218]

    Трифенилсилиллитий, металлируя трифенилгерман, дает трифенилсилан (76%) и трифенилгерманкарбоновую кислоту (66,5%) после карбонизации 185]. В этом случае металлирование отчетливо видно и находится в соответствии с положением германия в ряду электроотрицательностей, где германий-стоит выше водорода [142]  [c.387]

    Однако некоторые авторы пришли к заключению, что электроотрицательность германия выше, чем электроотрицательность кремния [98, 211, 215, 216, 260]. Подобное заключение вызвано некоторыми аномальными химическими свойствами определенных соединений германия и кремния. Это явление рассмотрено Олредом и Роховом [3] и вкратце состоит в следуюшем  [c.225]

    Вест и Бени [262] изучали частоты ОН-групп в соединениях (СбН5)зМОН (М = С, 5i, Ое, 5п, РЬ) с целью определить, имеется ли в этом ряду линейная зависимость между инфракрасными колебательными частотами групп и электроотрицательностью различных заместителей. Ранее такая зависимость была отмечена для соединений других рядов. Результаты Веста и Бени показали, что частоты ОН-групп в соединениях кремния и германия значительно расходятся. Это можно было бы объяснить образованием дативных и-связей за счет передачи электронов кислорода на свободные орбиты атома кремния или германия. Тот факт, что в соединениях олова и свинца таких расхождений не наблюдается, согласуется, по мнению авторов, с [c.227]

    По отношению к кислороду, галогенам и другим электроотрицательным элементам элементы главной подгруппы IV группы проявляют максимальную валентность, равную четырем, что соответствует номеру группы. Но наряду с этим они могут выступать и как двухв лттвые. Углерод наряду с СО2 и 82 образует также СО и С8 правда, последнее соединение очень неустойчиво. Соединения 810 и 818 также мало устойчивы. Еще большей склонностью проявлять двухвалентность обладает германий, который, кроме двуокиси и дисульфида, образует еще и дихлорид. Тенденция выступать в качестве двухвалентного элемента растет далее у олова, для которого устойчивости двух- и четырехвалентного состояния примерно равны. Наконец, у свинца двухвалентное состояние преобладает над четырехвалентным. [c.449]

    Еще более активно, чем ионы хлора, действуют на золото ионы N . В их присутствии золото окисляется даже кислородом воздуха. Этот процесс лежит в основе получения золота цианидным выщелачиванием из золотоносной руды. Со своими ближайшими аналогами — серебром и медью — золото образует непрерывные твердые растворы, аналогичный характер взаимодействия наблюдается при сплавлении золота с некоторыми элементами VIH группы — платиной и палладием. В системах золото— медь и золото — платина непрерывные твердые растворы существуют лишь при высоких температурах, при понижении температуры наблюдается их распад с образованием упорядоченных металлических соединений, так называемых фаз Курнакова, Золото образует ряд металлических соединений (ауридов) с электроположительными и переходными металлами ПА, ША, IVA, VIIA и VIIIA подгрупп. Ограниченные твердые растворы и металлические соединения золото образует со многими элементами, более электроотрицательными по сравнению с ним. Так, золото образует широкие области ограниченных твердых растворов с металлами ПА подгруппы (цинком, кадмием, ртутью), IIIA подгруппы (алюминием, галлием, индием), IVA подгруппы (германием, оловом, свинцом) и VA подгруппы (мышьяком, сурьмой). За пределами растворимости в этих системах образуются соединения, имеющие во многих случаях переменные составы. [c.84]


Смотреть страницы где упоминается термин Германий электроотрицательность: [c.494]    [c.66]    [c.72]    [c.227]    [c.231]    [c.272]    [c.275]    [c.30]    [c.71]    [c.14]    [c.7]    [c.71]    [c.270]    [c.275]    [c.326]    [c.230]    [c.192]    [c.195]    [c.41]   
Неорганическая химия (1987) -- [ c.568 ]

Химия германия (1967) -- [ c.9 ]

Справочник по общей и неорганической химии (1997) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Электроотрицательность



© 2024 chem21.info Реклама на сайте