Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Студни переход в раствор

    Переходу раствора ВМВ в студень способствует ряд факторов увеличение концентрации раствора, понижение температуры и добавка к раствору веществ, уменьшающих гидратацию частиц и снижающих вследствие этого устойчивость системы (например, электролитов). Так, при добавлении к раствору высокополимера электролитов на процесс перехода раствора в студень оказывают влияние, главным образом, анионы. Все анионы по их способности влиять на скорость застудневания можно расположить в лиотропный ряд такого же вида, который был рассмотрен при изучении высаливающего действия анионов. Чем больше ион проявляет способность гидратироваться, тем активнее в его присутствии происходит дегидратация частиц, что облегчает соединение их между собой и образование структуры. Ниже приведен ряд анионов [c.367]


    Переход раствора полимера в состояние студня при той же концентрации называется застудневанием, например, при охлаждении 5%-ный раствор желатины превращается в студень. Застудневание отчетливо проявляется в прекращении броуновского движения в студне, оно не сопровождается заметным тепловым эффектом или изменением объема, что объясняется малым числом образующихся межцепных связей. [c.185]

    Сравнивая действие хлористых солей аммония, натрия, калия и магния, мы видим, что катионы мало влияют на застудневание. Если же сравнивать соли с одинаковым катионом и различными анионами, то картина выглядит иначе наиболее эффективно действуют сернокислые и уксуснокислые соли, ускоряющие застудневание. Хлористые и иодистые соли задерживают, а роданистые совершенно устраняют возможность перехода раствора глютин а в студень. [c.229]

    Повышение концентрации растворов ВМС всегда увеличивает вероятность застудневания, так как при этом возрастает вероятность столкновения макромолекул или их фрагментов. Увеличение числа столкновений повышает возможность образования межмолекулярных связей. Обычно в этом же направлении действует и понижение температуры, хотя для отдельных систем иногда может наблюдаться и обратная картина. Это бывает лишь тогда, когда наблюдается отрицательный температурный коэффициент растворимости ВМС в данном растворителе. Переход раствора в студень совершается при охлаждении непрерывно и не характеризуется какой-либо определенной температурой. [c.373]

    Следует заметить, что переход раствора ВМС в студень при изменении температуры происходит непрерывно, т. е. в этом случае нет постоянной температуры перехода, как это имеет место, например, при кристаллизации или плавлении. [c.190]

    Если при изменений температуры поперечные связи могут разрушаться тепловым движением, т. е. сетка приобретает флуктуационный характер, студень переходит в состояние раствора. Этот процесс называется плавлением студня. Существует два типа студней. [c.288]

    Переход раствор — студень, т. е. процесс застудневания, характеризуется резким возрастанием вязкости во времени. Это обусловлено постепенным образованием более прочных поперечных связей, не разрушающихся под действием теплового движения и малых напряжений сдвига. Однако студни I и И типа (см. стр. 288) различаются реологическим поведением. [c.396]

    Опыт показывает, что растворы ортокремниевой кислоты неустойчивы во времени и имеют тенденцию образовать мицеллы илн переходить в студень. [c.289]

    Процесс 3. является самопроизвольным, идущим с уменьшением свободной энергии системы, причем как теплосодержание, так и энтропия системы в процессе 3. уменьшаются. 3. обратимо, но переход раствора в студень не является фазовым переходом. Самопроизвольное 3. раствора не является конечной стадией изменения системы во времени. 3. — кинетич. процесс, спонтанно развивающийся до наступления равновесного состояния, сопровождающегося разделением ранее однофазной системы на две фазы — равновесный студень постоянного состава и раствор высокомолекулярного вещества, находящийся в термодинамич. равновесии со студнем (синерезис студня). Если концентрация раствора соответствует равновесной концентрации студня, то 3. не сопровождается синерезисом. На характер процесса 3. существенное влияние оказывают полидисперсность полимера и наличие даже незначительных примесей. Последние приводят к тому, что неравновесное состояние может сохраняться в течение длительного отрезка времени. [c.42]


    Хотя процесс образования студней второго типа связан с фазовым превращением — распадом гомогенного раствора на две фазы, ни момент возникновения фаз, ни конечный момент достижения полного равновесия их по составу не могут считаться временными точками застудневания. Это вытекает из условности определения студня как полимерной системы, обладающей высокой обратимой деформацией при практическом отсутствии течения. Последнее понятие в этом определении— практическое отсутствие течения вносит тот элемент неопределенности, который может быть игнорирован в технологической практике, но делает условной границу времени, позволяющую считать осуществленным переход раствора в студень. Поэтому, говоря о кинетике застудневания, правильнее иметь в виду скорость нарастания вязкости системы, а за момент достижения состояния студня принимать условно момент достижения вязкости, при которой за избранный промежуток времени воздействия определенной нагрузки деформация не превышает заданную величину. [c.110]

    Не останавливаясь подробнее на других работах, в которых производилось дилатометрическое исследование процесса перехода раствор — студень, отметим, что все эти работы свидетельствуют о наличии скачка удельного объема системы при застудневании и, следовательно, отражают наличие фазового перехода, следствием которого и является застудневание. [c.120]

    Процесс перехода раствора в студень называется застудневанием или желатинированием. Желатинирование — это своеобразная коагуляция, когда одновременно с дисперсной фазой выпадает в осадок и дисперсионная среда. Желатинирование происходит в том случае, когда частицы золя сильно связаны с дисперсионной средой. Поэтому такие типичные коллоидные растворы, как золи благородных металлов, не способны к образованию гелей, а обработка растворов ВС сильно дегидратирующими средствами лишает их способности желатинироваться. [c.366]

    Переходу раствора ВМВ в студень способствует ряд факторов увеличение концентрации раствора, понижение температуры, и добавка к раствору веществ, уменьшающих гидратацию частиц и, снижающих вследствие этого, устойчивость системы (например электролитов). Так, при добавлении к раствору высокополимера электролитов, на процесс перехода раствора в студень оказывают влияние, главным образом, анионы. Все анионы по их способности влиять на скорость застудневания можно [c.362]

    Набухший гель по своему строению не однороден, а состоит 113 двух фаз 1) ассоциированной фазы — коллоидных гидратированных частиц — и 2) насыщенного раствора вещества коллоида в воде. В ассоциированной фазе частицы вещества связаны молекулярными силами в общую сплошную структуру и образуют губкообразный каркас, придающий всей системе некоторую механическую прочность. Капилляры между волокнами каркаса заполняются раствором более растворимой фракции данного вещества. В таком студнеобразном геле связи между полярными группами в результате их гидратации почти полностью нарушаются, а остаются действующими лишь связи между углеводородными цепями. Эти связи при повышении температуры ослабевают, что обусловливает резкое увеличение набухания. Так, при повышении температуры студня желатина на 10° С объемный эффект набухания возрастает приблизительно в два раза. При дальнейшем повышении температуры студень расплавляется без резко выраженной точки плавления, т.е. вязкость студня с повышением температуры постепенно понижается, и студень переходит в жидкое состояние. [c.20]

    Растворы высокомолекулярных веществ, равно как и лиозоли, в известных условиях теряют свою текучесть, т. е. переходят в студни. Застудневание может происходить спонтанно (самопроизвольно), в результате изменения температуры, при концентрировании раствора или при добавлении к нему не слишком больших количеств электролита. Как правило, под действием этих факторов структурная вязкость системы возрастает, что приводит к превращению жидкости в студень — систему, проявляющую ряд свойств твердого тела. [c.481]

    Если при образовании студня не возникают химические межмолекулярные связи, этот процесс является обратимым. Механическое перемешивание может перевести такой студень вновь в подвижную жидкость. Еще легче студень переходит в текучий раствор при повышении температуры (плавление студней), так как при этом увеличивается интенсивность конформационных превращений макромолекул и время жизни отдельных контактов существенно понижается. Поскольку процессы образования и плавления студней не сопровождаются фазовыми переходами, переход из текучего состояния в твердое и обратно происходит плавно в каком-то определенном интервале температур. [c.91]

    Чем выше концентрация, тем выше температура, при которой растворы высокомолекулярных веществ переходят в студий. Например, достаточно концентрированные (30—45%-ные) растворы желатина способны застудневать уже при температуре около 30 °С, - более разбавленные (10%-ный) растворы переходят в студень при температуре около 22°С. Растворы агара застудневают при еще более высоких температурах, и студни при этом получаются более прочными, чем студни желатина. Наоборот, растворы каучука застудневают только при температурах, лежащих значительно ниже нуля. Так, 3%-ный раствор натурального каучука переходит в студень при температуре —41°С. Плохое застудневание растворов каучука объясняется, конечно, отсутствием в его молекулах полярных групп, способных, вступая друг с другом в контакт, образовывать достаточно прочную связь. [c.484]


    Из существующих гипотез о строении студней наиболее распространенной является гипотеза о сетчатой структуре их. Сущность ее сводится к представлению об образовании между макромолекулами полимера контактных связей, которые лишают цепные молекулы кинетической самостоятельности, сохраняя у них лишь ограниченную подвижность отдельных участков (сегментов). Эта гипотеза обычно распространяется не только на те системы, у которых контакты между макромолекулами имеют природу химической связи и для которых характерна необратимость студнеобразования (вулканизованный каучук, задублениые белки и т. п.), но и на системы, в которых переход раствор—студень обратим при небольших сдвигах температуры или состава. [c.181]

    Переход растворов полимеров в студни может происходить и в результате образования более прочных и стабильных, в частности химических, связей между макромолекулами. Например, студень образуется при вулканизации каучука в растворе. Отличительной особенностью таких процессов является их необратимость, с повышением температуры такие студни не плавятся, так как химические межмолекулярные связи при этом не разрушаются. [c.92]

    Если набухший студень при той же температуре далее самопроизвольно переходит в раствор, происходит неограниченное набухание. Так, натуральный и дивиниловый каучуки в бензоле, нитроцеллюлоза в ацетоне, гуммиарабик в воде сначала набухают, а затем переходят в раствор, образуя золь. В этом случае происходит полное раздвигание цепей полимера и отрыв макромолекул друг от друга. При ограниченном набухании раздвигание цепей происходит только в некоторых участках, остальные части цепи остаются связанными между собой, [c.296]

    Ограниченное набухание может переходить в неограниченное при повышении температуры или изменении состава среды. Например, студень желатины растворяется в воде при нагревании выше 40—42° С или при комнатной температуре при добавлении 2М K NS или KI. Эти явления вполне аналогичны переходу ограниченно растворимых жидкостей, например, системы фенол — вода, к полному смешению при нагревании выше 66° С или при добавлении салици-лата натрия. В отличие от неограниченного набухания, ограниченно набухший студень, как и система ограниченно растворимых жидкостей, находится в равновесном состоянии. [c.180]

    Ограниченное набухание — эго набухание, которое не доходит до стадии растворения. В этом случае полимер поглощает низкомолекулярную жидкость, но сам в ней не растворяется или растворяется очень мало, образуя студень, В качестве примера ограниченного набухания можно назвать набухание желатина в воде при комнатной температуре. При нагревании желатин полностью растворяется. Опыт показывает, что ограниченным набуханием обладают полимеры, которые имеют своеобразные мостики , т, е, химические связи между макромолекулами. Такие мостики не позволяют молекулам полимера отрываться друг от друга и переходить в раствор. Кроме того, пространственная сетка, образованная такими макромолекулами, служит своеобразной мембраной, через которую могут проникать лишь молекулы растворителя (при невозможности диффузии макромолекул). Опыт показывает, что если связь между макромолекулами у полимера прочная, полимеры, обладающие ограниченным набуханием при низких температурах, могут набухать неограниченно при высоких температурах, как, например, агар-агар или желатин. [c.331]

    Электролиты неодинаково влияют на студне- и гелеобразование. Одни электролиты (точнее их ионы) ускоряют застудневание, другие, наоборот, замедляют, а в некоторых случаях совершенно устраняют возможность перехода золя в гель или раствора высокомолекулярного вещества в студень. [c.229]

    Многие гели и студни под влиянием механических воздействий при перемешивании, встряхивании и т. д. способны разжижаться, переходить в золи или растворы полимеров, а затем, при хранении в покое, с большей или меньшей скоростью вновь застудневать. Если вновь полученный гель или студень опять перемешать, то он снова разжижается, вязкость его уменьшается до вязкости исходного золя или раствора полимера. Но стоит оставить полученную систему в покое, как она через определенное время снова превращается в гель или студень. [c.232]

    Согласно принятой в настоящее время терминологии, гелеобразованнем или желатинированием называют переход коллоидного раствора из свободно-дисперсного состояния (золя) в связнодисперсное (гель). Термином застудневание пользуются для обозначения аналогичного перехода раствора высокомолекулярного вещества в студень. [c.315]

    Повышение температуры, если только при этом в системе не происходит необр-атимых химических изменений, обычно препятствует застудневанию из-за возрастания интенсивности микроброу-новского движения сегментов и уменьшения вследствие этого числа и длительности существования связей, возникающих между макромолекулами. Наоборот, понижение температуры, как правило, способствует застудневанию, так как при этом спектр контактов между макромолекулами расширяется и сдвигается в сторону большей прочности. Следует заметить, что переход раствора в студень, равно как и студня в раствор, с изменением температуры совершается непрерывно, т. е. в этом случае не существует температур, подобных температурам кристаллизации или плавления. [c.483]

    Для наименования структурированных систем приняты термины гель и студень. Понятия гель и гелеобразование обычно относят к переходу лиофобных дисперсных систем (золей, суспензий) в вязкодисперсное состояние (см. рис. 27.3). Гели являются гетерогенными системами, они двухфазны, как золи и суспензии. Переход растворов полимеров к нетекучей эласт-ичной форме -обозначают понятиями студнеобразование и студень. Полимерные студни могут быть как гомогенными (I тип), так и гетерогенными системами (И тип). [c.475]

    Лроцесс застудневания начинается при определенной критической концентрации раствора полимера, характерной для конкретной системы полимер — растворитель. При концентрации ниже критической студень не образуется. Понижение температуры способствует возникновению и упрочнению межмолекулярных контактов вследствие снижения растворимости полимера и уменьшения кинетической энергии макромолекул. Переход раствора полимера в студень при охлаждении осуществляется непрерывно н не характеризуется какой-либо определенной температурой. Растворимость полимера можно уменьшить введением в раствор небольших количеств добавок, ухудшающих растворяющую способность растворителя. У одного и того же полимера лучшим студнеобра-зователем будет высокомолекулярная фракция, так как с увеличением молекулярной массы уменьшается растворимость. [c.267]

    Напротив, если студень поглощает определенное количество растворителя, но не образует раствора полимера, то такое набухание называется ограниченным (например, желатина в холодной воде). Ограниченное набухание может переходить в неограниченное при повышении температуры или изменении состава среды. Например, студень желатины растворяется в воде при нагревании выше 40—42 или при комнатной температуре при добавлении 2М КСЫ8 или К1. Эти явления вполне аналогичны переходу ограни-ченно-растворимых жидкостей, например, системы фенол-вода, к полному смешению при нагревании выше 66° или [c.201]

    Переход раствора полимера в состояние студня при той же концентрации называется застудневанием, например, при охлаждении 5%-ного раствора желатины он превращается в студень. Застудневание отчетливо проявляется в прекращении броуновского движения в студне, оно не сопровождается заметным тепловым эффектом или изменением объема, что объясняется малым числом образующихся межцепных связей. Влияние электролитов на скорость застудневания зависит от их положения в лиотропном ряду (см. стр. 185), начиная от сульфатов, которые наиболее сильно ускоряют застудневание. Напротив, лиотропный ряд влияния электролитов на плавление студней имеет обратную последовательность, так как наиболее сильное расплавляющее действие оказывают ро-даниды и йодиды (см. стр. 208). Ввиду замедленной скорости установления равновесия в растворах полимеров (см. стр. 171), их нагревание и охлаждение может сопровождаться гистерезисом ряда свойств — вязкости, оптического вращения (мутаротация) и др., изменение которых обычно отстает от скорости изменения температуры растворов. Интересно, что слишком сильное охлаждение не ускоряет, а тормозит процесс застудневания, благодаря замедлению скорости образования межцепных связей. Например, по Хоку, 1,5%-ный раствор желатины в глицерине застудневает при комнатной температуре в несколько дней, а при 0° остается в течение нескольких недель в жидком состоянии. В эластичных гелях при определенной концентрации полимера и электролитов застудневание раствора может происходить в изотермических условиях, по типу тиксотропных превращений. Разбавленный студень желатины можно получить тиксотропным, подобно гелю гидроокиси железа тиксотропными свойствами обладает также протоплазма при некоторых клеточных процессах — во время деления клеток, при возбуждении клетки, при действии наркотиков и др. [c.209]

    Аналогичные процессы застудневания были изучены Липатовым и Зубовым [67—69] для растворов полимет-акриловой кислоты в воде и метиловом спирте. При повышении температуры наблюдается переход раствора в студень. На рис. III.36 приведены кривые изменения вязкости с температурой для 6%-ного раствора по-лиметакриловой кислоты в воде со степенью нейтрализации О и 8%. Процесс полностью обратим при охлаждении раствора. Это свидетельствует о том, что образую- [c.144]

    Более изучена вторая стадия процесса изготовления губчатой резины из латекса—желатинирование латексной пены. Под термином желатинирование в классической коллоидной химии понимается переход раствора высокополимера в студень . Наличие сплошных структур придает такому студню своеобразные свойства—механическую прочность и упругость сдвига. Эти механические свойства определяются химической природой веществ (молекулярные силы сцепления между элементами структуры и взаимодействие их с дисперсной средой) и степенью развития структуры в объеме системы. Механизму образования таких структур может быть приписан коагуляционный характер. Основной причиной образования дисперсных структур с характерной механической прочностью и упругостью сдвига являются силы сцепления, действующие непосредственно между участками поверхностей—в местах наибольшей лиофоб-ности . [c.152]

    Таким образом, при изменении температуры возможен переход от вязко-текучих растворов полимеров к студням и далее к стеклообразным системам и обратно. Однако помимо обычных релаксационных явлений, связанных с перегруппировками частей молекул, в студнях возникают еше релаксационные явления, обусловленные неравновесными процессами структурообразования. Эти явления релаксационного струк-турообразования особенно резко ощущаются в области перехода студень — вязкий раствор полимера, вызываемого изменением температуры системы. [c.170]

    Переход раствора полимера в состояние студня при той же концен трации называется застудневанием, нанример нри охлаждении 5% раствора желатины он превращается в студень. Застудневание сопряжено с прекращением броуновского движения в студне. Застудневание не сопровождается заметным тепловым эффектом или изменением объема, что объясняется малым числом образующихся межценных связей. Влияние электролитов на скорость застудневания следует их положению в лиотропном ряду, начиная от сульфатов, которые наиболее сильно ускоряют застудневание. Напротив, лиотропный ряд влияния электролитов на плавление студней имеет обратную последовательность, так как наиболее сильное расплавляющее действие оказывают роданиды и йодиды. [c.265]

    Часто набухание студня переходит в полное его растворение (например, набухание каучука в бензине или гуммиарабика в воде). В этом случае говорят онеограниченном набухании данного полимера. Если студень поглощает определенное количество растворителя, но не образует раствора полимера, то такое набухание называется ограниченным. В качестве примера можно назвать набухание желатина в холодной воде, вулканизированного каучука в органических жидкостях. Иногда ограниченное набухание может переходить в неограниченное при повышении температуры или изменении состава среды. Так, студень желатина хорошо растворяется в воде при нагревании выше 313—315 К или при комнатной температуре при добавлении 2 н. раствора KS N илн KI. [c.390]

    Набухание далеко не всегда кончается растворением. Очень часто после достижения известной степени набухания процесс прекращается. Одна из причин такого явления может заключаться в том, что высоком,олекулярное вещество и растворитель способны смешиваться ограниченно. Поэтому в результате набухания в системе образуются две фазы — насыщенный раствор полимера в растворителе (собственно раствор) и насыщенный раствор растворителя в полимере (гель, студень). Такое ограниченное набухание носит равновесный характер, т. е. объем набухшего до предела высокомолекулярного вещестна неограниченно долго остается неизменным, если только в системе не произойдут химические изменения. Примерами набухания, обусловленного ограниченным растворением, являются набухание поливинилхлорида в ацетдне и полихлоропрена в бензоле. Следует отметить, что ограниченное набухание, причина которого кроется в ограниченном растворении, очень часто при изменении условий опыта переходит в неограниченное. Так, желатин и агар, набухающие ограниченно в холодной воде, в теплой воде набухают неограниченно. [c.445]

    Предел, к которому стремится объем студня при синерезцсе, зависит от концентрации студня. Синерезис обычно тем больше, чем выше концентрация растворителя в исходном студне. Определенной зависимости скорости синерезиса от концентрации исходного студня нет. Например, при высоких концентрациях синерезис каучукового студня ускоряется, а студня крахмала и агара замедляется. Предельным объемом студня при синерезисе, по С. М. Липатову, является сумма объемов самих макромолекул и объема растворителя, сольватно связанного с высокомолекулярным веществом. Незначительное повышение температуры, как правило, способствует синерезису, облегчая перемещение молекул, необходимое для усадки студня. Однако при значительном повышении температуры может произойти переход студня в раствор. Внешнее давление на студень, конечно, всегда способствует синерезису. [c.491]

    Особый интерес представляют стабилизированные высокополи-мерами концентрированные суспензии. В таких суспензиях, как и в растворах высокомолекулярных веществ, происходит процесс структурообразования, т. е. образования структурных сеток, захватывающих большие объемы жидкости. Структуроабразование проявляется в резком увеличении вязкости системы. П. А. Ребиндер с сотрудниками показал, что в этих случаях стабилизатор — защитный полимер — образует на поверхности частиц суспензии механически прочные поверхностные студнеобразные пленки, получившие название двухмерных студней. При достаточной концентрации суспензий и стабилизатора такие пленки могут объединяться в единый каркас-сетку, захватывать большое количество дисперсионной среды и переходить в студень. В структурированных суспензиях обнаруживается явление тиксотропии и синерезиса ( 161), например в суспензиях бентонита и др. [c.344]


Смотреть страницы где упоминается термин Студни переход в раствор: [c.486]    [c.486]    [c.190]    [c.123]    [c.116]    [c.263]   
Курс коллоидной химии (1976) -- [ c.483 ]




ПОИСК





Смотрите так же термины и статьи:

Студни



© 2024 chem21.info Реклама на сайте