Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Параметры процессов водяного пара

    Требования к питательной воде паровых котлов (парогенераторов) энерготехнологических процессов обусловлены необходимостью предотвращения накипеобразования и коррозии поверхностей нагрева. К основным показателям качества питательной воды относятся значение pH, общая жесткость, содержание кремниевой кислоты, растворенного кислорода, свободной углекислоты, железа, меди и других соединений. Качество питательной воды зависит от параметров генерируемого водяного пара (табл. 4.5). [c.341]


    При выборе основных параметров технологаческого режима работы регенератора надо иметь в виду, что температура процесса регенерации, количество воздуха, подаваемого на регенерацию катализатора, содержание кислорода в дымовых газах и остаточного кокса на регенерированном катализаторе — взаимозависимые параметры. С понижением температуры и содержания кислорода в продуктах сгорания уменьшается вероятность самопроизвольного сгорания СО в СО2, но при этом появляется опасность накопления остаточного кокса на катализаторе, тем самым снижается глубина выжига. При повышении температуры регенерации увеличиваются глубина выжига кокса и производительность регенератора по количеству сжигаемого кокса, но не исключается возможность массового догорания окиси углерода, что может резко поднять температуру в регенераторе. Вода или водяной пар, впрыскиваемые в верхнюю зону регенератора для снижения температуры процесса, могут вызвать значительную перегрузку циклонов, снизить эффективность их работы и пропускную способность регенератора. [c.34]

    Большое внимание в книге уделяется свойствам водяного пара как растворителя различных неорганических соединений. Эти свойства вызывают значительные осложнения при эксплуатации современных тепловых электростанций, использующих пар сверхвысоких параметров. Надкритический водяной пар играет большую роль в образовании некоторых типов эндогенных рудных месторождений, а также в процессах преобразования осадочных пород, контактирующих с интрузивами. [c.4]

    Вакуумная колонна обычно имеет диаметр 1,8—2,5 м и высоту до 5 м. Размеры колонны определяются количеством обезвоживаемого масла, скорость движения которого в колонне не должна превышать 0,0015— 0,0020 м/с, чтобы пузырьки водяного пара успели выделиться из масла. Размеры колонны зависят также от количества образующейся пены, определяемого свойствами масла и наличием в нем присадок, количеством влаги, параметрами обезвоживания. Регулирование процесса в вакуумной колонне сводится к поддержанию заданной высоты слоя пены путем изменения вакуума в колонне (для этого впускают воздух в трубопровод, отводящий паро-воздушную смесь, или дросселируют вакуумную линию). Осушку масла ведут при 70—85°С остаточное да(вление в колонне может достичь 240 гПа. [c.131]

    В тепловых машинах рабочее тело (водяной пар, газ) участвует в различных процессах, которые характеризуются одновременным изменением давления, объема и температуры или только двух из этих параметров. Состояние рабочего тела изменяется в нескольких последовательно протекающих процессах. Эти процессы проводятся так, что в конце концов рабочее [c.59]


    Характерность изменения параметров Q по длине секций АВО, охлаждающих и конденсирующих парогазовые смеси, показана на рис. IV-4, отражающем результаты испытаний трех АВО типа АВЗ. В восемнадцати секциях аппаратов осуществляется процесс конденсации и охлаждения смеси, состоящей из 72% Oj и водяного пара (28% Н2О). Основные параметры работы аппарата в период испытаний приведены в табл. IV-3. [c.89]

    Основные параметры процесса конверсии метана водяным паром [c.115]

    Природный газ под давлением 4 МПа после очистки от серосодержащих соединений смешивается с паром в соотнощении 3,7 1, подогревается в теплообменнике отходящими газами и поступает в трубчатый конвертор метана с топкой, в которой сжигается природный газ. Процесс конверсии метана с водяным паром до образования оксида углерода протекает на никелевом катализаторе при 800—850°С. Содержание метана в газе после первой ступени конверсии составляет 9—10%. Далее газ смешивается с воздухом и поступает в шахтный конвертор, где происходит конверсия остаточного метана кислородом воздуха при 900—1000°С и соотношении пар газ = 0,8 1. Из шахтного конвертора газ направляется в котел-утилизатор, где получают пар высоких параметров (10 МПа, 480°С), направляемый в газовые турбины центробежных компрессоров. Из котла-утилизатора газ поступает на двухступенчатую конверсию оксида углерода. Конверсия оксида углерода осуществляется вначале в конверторе первой ступени на среднетемпературном железохромовом катализаторе при 430— 470°С, затем в конверторе второй ступени на низкотемпературном цинкхроммедном катализаторе при 200—260°С. Между первой и второй ступенями конверсии устанавливают котел-утилизатор. Теплота газовой смеси, выходящей из второй ступени конвертора СО, используется для регенерации моноэтаноламинового раствора, выходящего из скруббера очистки газа от СОг. [c.98]

    Поглотитель перед использованием в процессе сероочистки восстанавливается при 200—240 С окисью углерода и водородом, разбавленными азотом или водяным паром. Параметры процесса сероочистки температура — 250—300 С давление — до 4,9 МПа обьемная скорость подачи — 1000—2000 ч . Степень очистки от сернистых соединений —98—100%. [c.401]

    Катализатор предварительно активируется нагреванием в токе азота до 200—250 °С с последующей заменой азота на водяной пар и подъемом температуры до 610 С. Параметры процесса дегидрирования этилбензола температура — 560—620 °С объемная скорость подачи сырья — 0,35—0,5 ч" . [c.411]

    Перед использованием катализатор восстанавливают при 180—220 С смесью окиси углерода и водорода, разбавленной азотом или водяным паром. Недопустим перегрев катализатора выше 230 С. Катализатор применяют во второй ступени процесса конверсии СО. Параметры процесса) температура — 200—240 °С давление — 2,9 МПа. Ядами для катализатора являются соединения серы, хлора, непредельные, аммиак, масло, соли, содержащиеся в паре и конденсате. Срок службы — 1—2 года. Катализатор регенерируют окислением паром или смесью пара и воздуха с последующим восстановлением. [c.402]

    Перед использованием в процессе катализатор активируется с последующей разработкой при постепенном подъеме температуры до 630 °С. Параметры процесса дегидрирования температура — 580—600 С с постепенным подъемом до б Ю—660 °С давление—0,1 МПа, объемная скорость подачи углеводородного сырья — 120—200 4 1. Мольное соотношение сырье/водяной пар = 1 i 20. В зависимости от вида сырья степень превращения равна 40—48%, селективность — 83—88%. Срок службы катализатора — не менее года. Ядами для катализатора являются металлические никель и медь, окислы железа. [c.410]

    Перед использованием в процессе катализатор обрабатывается водяным паром при температуре 630—650 С в течение 2 ч, после чего проводится разработка катализатора. Параметры процесса дегидрирования температура — 570— 630 С( давление Сб9 кПа перепад давления по слою катализатора < 49 кПа объемная скорость подачи сырья — 500—800 ч . Степень превращения бутилена в этих условиях составляет 24%, селективность — 80%. Ядами для катализатора являются ацетон и соли меди. Регенерация катализатора осуществляется при температуре 620 С в течение 1—1,5 ч. Срок службы катализатора равен 3000— 3500 ч. [c.410]

    Перед использованием в процессе катализатор активируют" в присутствии кислорода воздуха при 550 °С в течение 2 ч. Параметры процесса дегидрирования температура верхнего слоя катализатора — 570 °С объемная скорость поддачи изопропилбензола — 0,5 ч массовое соотношение этилбензол/водяной пар =1 3. При этих условиях выход а-метилстирола составляет 53 и Й3% на пропущенный и разложенный изопропилбензол, соответственно. Ядами для катализатора являются хлор, хлорорганические соединения, сера, аммиак и аминосоединения, мышьяк. Регенерация катализатора проводится паровоздушной смесью. [c.411]

    Как будет показано ниже, в вихревой трубе происходит организованное течение газа в высоконапряженном поле центробежных сил со сложной структурой при непрерывном изменении всех характеризующих газ параметров. Безусловно, при влажном газе, при наличии конденсирующих компонентов, а также жидкой или твердой дисперсной фаз процессы, протекающие в вихревой трубе, должны еще больше усложняться. При этом следует ожидать значительной интенсификации процессов конденсации и сепарации. При движении парогазовых смесей в каналах сопловых вводов (пар одного компонента) условием конденсации является пересыщение пара и, чем быстрее идет расширение смеси, тем к большему пересыщению приходит система, что приводит к конденсации. Как следует из данных А. Стодола, исследовавшего конденсацию водяного пара в сопле, в этих условиях возможна и гомогенная конденсация даже при наличии некоторой доли дисперсной фазы (данные представлены в монографии Л. Е. Стернина [6]). При медленном расширении пара в сопле пересыщение может и не происходить, так как пар успевает конденсироваться на посторонних частицах. Из этого следует, что для начала конденсации важную роль играет промежуток времени, в течение которого создается пересыщение. В монографии отмечается и такой факт, что при наличии в потоке газа даже небольшого количества другого вещества с более высокой температурой и давлением насыщения в первую очередь происходит гомогенная конденсация этого вещества с образованием большого количества зародышей, на которых в дальнейшем конденсируется основной компонент. Пересыщение пара при этом может и отсутствовать. О том, что конденсация в соплах возможна, можно сделать вывод, если сопоставить уравнение Клаузиуса-Клайперона (1.2) и уравнение изменения давления при адиабатическом расширении в сопле совершенного газа  [c.10]


    Основным технологическим и конструктивным элементом печи является реакционная труба, конструктивное исполнение, размеры и срок службы которой тесно связан с параметрами процесса - температурой и давлением. Реакционная труба представляет собой самостоятельный реактор, в котором происходит взаимодействие углеводородов с водяным паром за счет тепла, подводимого через стенку трубы. [c.85]

    Для достижения максимального термического к. п. д. процесса газогенератор должен работать при повышенном давлении, с невысоким расходом кислорода и водяного пара, низкими потерями тепла. Желательно также, чтобы при газификации получалось минимальное количество побочных продуктов и процесс был пригоден для переработки различных углей. Однако некоторые из перечисленных факторов являются взаимоисключающими. Например, нельзя обеспечить невысокий расход кислорода и избежать при этом побочных продуктов. Поэтому в каждом конкретном случае требуется выбирать оптимальное сочетание параметров процесса. [c.93]

    Пиролиз низкооктанового бензина. В качестве основных возмущающих факторов процесса были выбраны температура пирогаза на выходе из печи Хх, расход бензина Х и добавка водяного пара Хз. Выходными параметрами были приняты выходы этилена пропилена бутиленов Уз, дивинила У4, суммы этилена и пропилена У , метано-водородной фракции Кв, а также пирогаза и удельная плотность пирогаза У . В качестве показателя жесткости процесса для сопоставительного анализа и оценки полученных результатов в различных режимах используется кинетическая функция жесткости и эквивалентное время контакта. [c.71]

    Параметры процесса температура 550-825°С, давление 3-40 атм, отношение водяной пар углерод от 2 1 до 6 1, среднечасовая скорость подачи жидкости 1-4 в расчете на объем нефти. Состав образующегося газа меняется в зависимости от сьфья и параметров процесса. Так, при 750°С, 8 атм и отношении Н2О С = 3,3 1 был получен газ следующего состава 4% СИд 69% Нг 14% СО 12% [c.161]

    Методика распространяется на ИУ, предназначенные для воздействия на технологические процессы путем изменения расхода проходящих через них жидкостей, газов или водяного пара, и устанавливает методы определения с помощью ЭВМ следующих параметров ИУ  [c.131]

    Активность и срок службы фосфатных катализаторов существенно зависят от тщательности соблюдения основных параметров процесса температуры дегидрирования и регенерации, разбавления водяным паром, объемных скоростей сырья и регенерирующей смеси, длительности цикла и др. [c.138]

    Разложение ДМД осуществляется в реакторе с движущимся слоем катализатора, в качестве которого используют фосфорную кислоту на носителе (кварце, песке). После регенерации катализатор играет роль теплоносителя, в результате чего отношение водяной пар ДМД снижается до 0,25—0,5. Приведенные ниже параметры процесса являются ориентировочными, поскольку в промышленности этот процесс не реализован  [c.210]

    Водяной пар массой 1 кг сжимается изотермически. При этом состояние пара меняется так, что начальные его параметры />1 = 3 МПа и / = 360 °С, а конечные соответствуют состоянию кипящей жидкости. Определить параметры в конце процесса и количество отведенной теплоты. [c.284]

    Нами предложена схема комплексной автоматизации непрерывной битумной установки колонного типа (см. рис. 95). Предусмотрено автоматическое регулирование следующих параметров технологического режима, аппаратов и оборудования. Расход сырья, подаваемого на установку насосом через змеевик печи, стабилизируется при помощи регулятора расхода с воздействием через регулирующий клапан на изменение подачи водяного пара в паровой насос. Одним из основных параметров технологического режима на установке является температура продукта в окислительной колонне. Стабилизация этой температуры способствует постоянству скорости процесса окисления сырья в битум и стабилизации физико-химических свойств получаемого битума. [c.345]

    Цены на нефтяные фракции, применяемые для производства синтез-газа в различных капиталистических странах, устанавливаются на основе таких общеизвестных и легко измеряемых свойств, как плотность, вязкость и содержание серы. Однако-для химического использования непосредственный интерес представляет элементарный состав нефтяной фракции или ее теплосодержание (энтальпия) при температуре сырьевого потока. Если эти параметры известны, то легко можно вычислить проектный расход кислорода, топлива и водяного пара на производство синтез-газа- Одной из задач данного доклада и является изложение общего метода расчетного определения эксплуатационных показателей установок производства синтез-газа непосредственно на основании таких свойств нефтяного сырья, как плотность, вязкость и содержание серы. Этот метод может также использоваться для построения эксплуатационных кривых, характеризующих поведение любого нефтяного сырья в реакторе частичного окисления, как функцию независимых параметров процесса отношения кислород топливо, отношения водяной пар топливо, температура предварительного подогрева, чистота кислорода и производительность. [c.185]

    При десорбции (отпарке) из компонентов насыщенного абсорбента водяным паром, инертным газом или отпаривающим агентом с небольшим содержанием остаточных компонентов, например, сухим газом из абсорбера, параметры процесса разделения связаны следующим уравнением ,  [c.147]

    Тепло для регенерации подводят в выносных нагревателях, в которых осуществляется нагрев продувочного газа, используемого для нагрева насыщенного адсорбента. Широко применяют также схемы с обогревающими устройствами, расположенными непосредственно в слое адсорбента. В любом случае необходимо нагреть все количество адсорбента до требуемой температуры регенерации. Температура регенерации изменяется от 177 до 315° С и зависит от многочисленных параметров, в том числе от типа адсорбента, требуемых показателей процесса и используемых источников тепла. Тепло можно подводить при помощи водяного пара, электроэнергии или работающих на газе печей. [c.72]

    ВНИИНП также проводится исследования процесса парокислородной газификации нефтяных остатков на пилотной установке. Целью исследований является определение рабочих параметров процесса, влияния количества поданного на процесс водяного пара и кислорода на выход газа и сажи. Выход сажи зависит от температуры, давления и состава дутья, а также от углеводородного состава или отношения С Н (в элементном составе) исходного сырья и коксуемости по Кон-радсону. К факторам, определяющим выход сажи, относятся, кроме того, степень распыления топлива и равномерность его смешения с окислителем в факеле газификации. [c.114]

    В работе [35] обобщены опытные данные по тепло- и массообмену при конденсации пара из парогазовых смесей в условиях вязкостного и вязкостно-гравитационного режимов течения. Опыты по конденсации паровоздушной смеси внутри горизонтальной трубы с пористыми стенками (с отсосом конденсата) были проведены в следующем диапазоне изменения основных параметров процесса Р = 0,035 -I-0,15 МПа м сч = 0,0752,2 м/с Кесм = = 380 2000 = 282 -ь 363 К Аг = 10 10в Ь о = 0,02 2,0 Уг = 0,0640,55 /Пп = 0,05 0,9. Здесь — массовая доля водяного пара в смеси йд—фактор проницаемости, определяемый по формуле (5.34). [c.167]

    Мен>1я переменные параметры процесса, состав сырья для глинистглх катализаторов, количеством пара можпо контролировать концентрацию и активность металлов в катализаторе. Примесь металлов приводит к значительному увеличению отложений кокса нри одновременном снижении выхода бензина. Это обстоятельство служит по-видимому существенной помехой для промышленного крекинга. На общую активность катализатора, как уже указывалось, влияет также перегрев, особенно, в присутствии водяного нара. Следовательно, контроль за условиями процесса чрезвычайно важен и с точки зрения их влияния на катализатор. Только таким образом можно предупредить необратимые изменения катализатора, приводящие к уменьшению выходов требуемых продуктов. [c.160]

    Гидродинамическое или паровое сопротивление АВО зависит от многих факторов, но в основном определяется отношением квадрата скорости потока к его удельному объему. Увеличение этого параметра приводит к снижению давления конденсации, а следовательно и давления водяного пара, температуры конденсации и, при прочих равных условиях, логарифмической разности температур на последующих участках поверхности теплообмена. В воздушных конденсаторах повышение парового сопротивления в процессе эксплуатации может быть связано с отглушнванием части теплообменных труб, образованием заливных зон и гидравлических пробок при деформации труб, дефектами монтажа. [c.138]

    Наиболее распространенным катализатором для этого процесса является фосфорная кислота на твердом носителе (широкопористый силикагель, алюмосиликат). Выбор параметров процесса наряду с отмеченными ранее факторами обусловлен экономическими соображениями, особенно снижением энергетических затрат на получение пара и рециркуляцию непревращенных веществ. Температура противоположным образом влияет на равновесие и на скорость кроме того, ее повышение ведет к усиленной полимеризации олефина и уносу фосфорной кислоты с носителя. Поэтому гидратацию этилена ведут при 260—300°С, когда для поддержания нужной концентрации Н3РО4 в поверхностной пленке катализатора требуется высокое парциальное давление водяного пара (2,5—МПа). Чтобы повысить степень конверсии водяного пара, получгть не слишком разбавленный спирт и этим снизить расход энергии, работают при некотором избытке этилена [(1,4ч-1,6) 1]. Это п11едопределяет выбор общего давления 7—8 МПа, когда рав-новес ая степень конверсии этилена равна 8—10%. Однако фактическую степень конверсии поддерживают на уровне 4%, что позволяет работать при достаточно высоких объемной скорости (2000 ч ) и удельной производительности катализатора по спирту [180—220 кг/(м -ч)], получая после конденсации 15%-ный эта но . [c.191]

    Технологическая схема синтеза этанола. Из-за малой степени конверсии реагентов и высоких температуры и давления при прямой гидратации этилена важнейшее значение имеют вопросы рециркуляции веществ и экономии эпергип. Существующие схемы процессов заметно различаются, в особенности происхождением водяного пара, требуемого для сннтеза, и степенью очистки целевого продукта. Водяной пар соответствующих параметров нередко берут со стороны (как принято в СССР) или получают на этой же установке в трубчатой печи. В последнем случае можно организовать водооборот технологической воды. Схема такого процесса изображена на рис. 64. [c.192]

    В зависимости от режима работы установок, являщихся источником сырья, состав его колебался в значительных пределах. Содержание водорода в нем составляло от 20 до 35 об.%, а сернистых соединений от 20 до 50 мг/м . При исследовании стадии пароуглекислотной конверсии сырье смешивалось с углекислотой, очищалось от сернистых соединений и непредельных углеводородов. Затем к нему добавляли водяной пар, и парогазовая смесь под рабочим давлением поступала в реактор конверсии, откуда после отделения воды конвертированный газ сбрасывался в атмосферу. Технологическая схема установки подробно рассмотрена в работе 4], где описаны также методика проведения эксперимента, анализ сырья и получаемых продуктов. Максимальный объем загружаемого катализатора сероочистки и пароуглекислотной конверсии составил 0,5 л. Эксперимент проводился в интервале давлений 1,2-2,О МПа. В результате эксперимента была подтверждена возможность использования катализатора ГИАП-16 и уточнены значения основных параметров процесса. [c.33]

    Имеющиеся в [1-3] данные по изменению адсорбционных свойств указанных цеолитов под действием водяных паров не учитывают фактические параметры работы этих процессов. Поэтоцу актуальным яв- [c.33]

    В производстве восстановительных газов для металлургических процессов важно добиться максимального выхода восстановптелей при минимальном расходе сырья (природного газа, кислорода, водяного пара). Выход восстановителей со, 2 ) зависит от состава исходной смеси и параметров процесса. При одинаковом остаточном содержании метана в конвертированном газе выход восстановителей тем выше, а расход кислорода тем меньше, чем ниже давление процесса и отношение водяной пар метан в исходной смеси и чем выше ее температура. [c.117]

    В газах каталитической конверсии углеводородов содераится в зависимости от параметров процесса и сырья 6-25% окиси углерода. В производствах, 1де окись углерода не требуется, производится ее конверсия в водяным паром. При этой получается дополнительное количество водорода, эквивалентное содеряанию в газе Л . Различают среднетемпературную (350-450°С) и низкотемпературнув (180-250°С) конверсию. Б первом случае остаточное содеряание 7 составляет несколько процентов, а во втором - доли процента. [c.189]

    В связи с тем, что контролируемые параметры в указанных условиях не выходили за границы технологических ограничений, условия ведения процесса (температура 825° С, расход сырья 2,5 т/ч и водяного пара 50%) следует считать околооптимальными. [c.73]

    Зависимость между некоторыми параметрами процесса и равновесием конверсии метана с водяным паром разобрана Велманом и Кетелем 111. [c.160]


Смотреть страницы где упоминается термин Параметры процессов водяного пара: [c.96]    [c.298]    [c.28]    [c.50]    [c.87]    [c.79]    [c.655]    [c.77]    [c.16]    [c.85]    [c.45]   
Нефтяные битумы (1973) -- [ c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Пар водяной параметры

Параметры водяного пара



© 2024 chem21.info Реклама на сайте