Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прибор для электрохимической очистки

    В технике очистки воды пользуются методом электрохимического растворения серебра (анодное растворение серебра). Этот метод позволяет с помощью электроизмерительных приборов установить точную дозировку и регулировать процесс обеззараживания. [c.161]

Рис. 8. Прибор для электрохимической очистки ртути Рис. 8. Прибор для <a href="/info/149020">электрохимической очистки</a> ртути

    Химическая технология с каждым годом играет все большую роль при создании современных машин и приборов. На любом машиностроительном предприятии применяют разные видьи химической очистки поверхности металлов, нанесение на изделия различных покрытий химическим и электрохимическим путем для защиты от коррозии, придания декоративных и специальных свойств. В связи с этим большое значение приобретает интенси-. фикация упомянутых процессов, улучшение качества покрытий, сохранение механических свойств покрываемых изделий. [c.3]

    В гл. I, 24 мы познакомились с сорбцией и, в частности, с адсорбцией, с их ролью в гетерогенном катализе. Поверхностные явления, в частности адсорбция, играют большую роль в самых различных областях техники. Для нас важно знать, что адсорбция изменяет не только поверхностные, но и объемные свойства полупроводниковых материалов, влияет на работу выхода электронов с поверхности твердых тел. С адсорбцией и десорбцией приходится сталкиваться в процессах химического и электрохимического травления и полирования полупроводников и металлов, при очистке поверхности твердых тел от загрязнений и т. д. Адсорбция и связанные с ней изменения поверхностного натяжения и разности потенциалов на границе раздела фаз играют громадную роль в коллоидной химии и электрохимии. Адсорбция используется для очистки газов и жидкостей, для удаления остатка газов из вакуумных приборов, для поглощения ОВ (в противогазах), для извлечения ценных веществ из растворов и газов и из отходов различных производств с целью рекуперации, для разделения и анализа смесей (хроматография) и т. д. [c.168]

    Особенности аналитических ячеек промышленных приборов определяются тем, что ввод пробы, разбавителя, сброс продуктов титрования и промывание автоматизированы. При конструировании этих ячеек учитывают и то, что ячейки работают без наблюдения в течение длительного периода времени. Сосуды аналитических ячеек, когда это возможно, стремятся изготавливать из стекла или прозрачных пластмасс. Возможность непосредственного наблюдения процессов, происходящих в аналитической ячейке, дает большие преимущества, особенно при проверке и наладке прибора. Например, в этом случае можно, при электрохимических способах определения точки конца титрования, использовать для контроля индикаторы. Применение стекла, кро.ме того, желательно ввиду его химической стойкости и легкости очистки. Однако использование прозрачных материалов, в частности стекла, для изготовления сосудов аналитических ячеек не всегда возможно вследствие [c.117]


    В качестве основной электрохимической характеристики красителей был принят электрокинетический потенциал. Измерения его осуществлялись методом электрофореза в усовершенствованном приборе Кена при комнатной температуре. Электропроводности боковых жидкостей во всех случаях уравнивались с аналогичными характеристиками испытуемых растворов. Кондуктометрические измерения осуществлялись в сосуде Кольрауша с помощью электронного осциллографа С1-1. Резкость границы достигалась добавлением небольших количеств этилового спирта. Вычисление -потенциала проводилось по формуле Гельмгольца—Смолуховского. В работе использовались тщательно очищенные от примесей минеральных солей красители. Очистка их осуществлялась методом многократной перекристаллизации красителей из водно-спиртовых растворов [2]. Концентрация красителей во всех случаях равнялась 1 г/л, а электролитов, гексаметафосфата натрия и трилона Б варьировалась от 10" до 10 г-экв/л. В качестве электролитов использовались хлориды натрия, магния, сульфаты алюминия, меди и закисного железа. [c.91]

    В химической промышленности платина применяется для изготовления коррозионностойких деталей аппаратуры. Платиновые аноды используются в ряде электрохимических производств (производство надсерной кислоты, перхлоратов, перборатов). Широко применяется платина как катализатор, особенно при проведении окислительно-восстановительных реакций. Она представляет собой первый, известный еще с начала XIX века гетерогенный катализатор. В настоящее время платиновые катализаторы применяются в производстве серной и азотной кислот, при очистке водорода от примесей кислорода и в ряде других процессов. Из платины изготовляют нагревательные элементы электрических печей и приборы для измерения температуры (термометры сопротивления и термопары). В высокодисперсном состоянии платина растворяет значительные количества водорода и кислорода. На ее способности растворять водород основано применение платины для изготовления водородного электрода (см. стр. 281). [c.698]

    Контроль и регулирование напряжения электрического тока, температуры и уровней в электролизерах, состава электролитов и других параметров процесса по показаниям контрольно-измерительных приборов и результатам анализов. Отбор проб. Обслуживание электролизеров различных конструкций (периодического и непрерывного типа, диафрагменных и ртутных) с токовой нагрузкой от 5000 до 20000 ампер. Отбор продуктов разложения или электрохимического синтеза из электролизеров. Очистка, промывка, побелка и покраска электролизеров. Ведение записей в производственном журнале. Руководство аппаратчиками, обслуживающими электролизеры с токовой нагрузкой до 5000 ампер. [c.130]

    Современная техника характеризуется все возрастающими требованиями к таким характеристикам изделий, как качество, надежность и долговечность, которые в значительной степени зависят от чистоты поверхностей деталей и узлов оборудования. Конструкции современных механизмов и приборов постоянно усложняются, возрастает чувствительность их деталей и узлов к загрязнениям. Поэтому обычные, классические методы очистки (например, ручная и механизированная очистка щетками, химическое и электрохимическое обезжиривание, струйная промывка) уже не могут обеспечить надлежащего качества. [c.3]

    Как следует из (3.6), чувствительность РК, можно увеличить, уменьшая диаметр капилляра. Однако диаметры применяемых капилляров практически ограничены нижним и верхним пределами. Нижний предел (0,2 мм) ограничен технологическими трудностями изготовления прибора и транспортными возможностями ЭЯ. Кроме того, уменьшение внутреннего диаметра капилляра приводит к возрастанию сопротивления РК и понижению допустимого тока интегрирования (пропорционально /(Р). С уменьшением диаметра капилляра возрастает и необходимость в более глубокой очистке электрохимической системы с целью исключения отрицательного влияния на работу РК примесей п. а. в. С увеличением же диаметра капилляра стабильность работы прибора возрастает, так как относительное влияние примесей с увеличением объема электролита в ЭЯ уменьшается. Верхний предел (0,4 мм) ограничен пределом устойчивости ртутных электродов к механическим воздействиям (ударным и вибрационным нагрузкам). С целью повышения устойчивости столбиков ртути к механическим воздействиям внутреннюю поверхность капилляра покрывают тонкой гидрофобизирую-щей пленкой из кремнийорганического соединения. Наиболее оптимальное значение диаметра капилляра для РК, используемых в счетчиках времени наработки, составляет 0,3 мм. Этому внутреннему диаметру капилляра соответствует чувствительность РК около 1 мм/К. [c.72]


Рис. 2.10. Прибор С. В. Пти-цына для электрохимической очистки ртути Рис. 2.10. Прибор С. В. Пти-цына для <a href="/info/149020">электрохимической очистки</a> ртути
Рис. 2.14. Прибор Ф. А. ФерьяЕгчича для электрохимической очистки неболь-пшх количеств ртути Рис. 2.14. Прибор Ф. А. ФерьяЕгчича для <a href="/info/149020">электрохимической очистки</a> неболь-пшх количеств ртути
    Возможна и более сложная автоматизация прибора с помощью синхронизатора, например, для вьщерживания ИЭ в течение заданного времени при потенциале около 0,0 В для электрохимического растворения остатков, накопившихся на поверхности вещества покрытия поверхности ИЭ ртутью при невысоком отрицательном напряжении разрушения комплексных соединений током водорода при достаточно высоких отрицательных напряжениях, при которых выделяется водород облучения раствора ультрафиолетовыми лучами для удаления кислорода и разрушения органических включений. Все эти виды обработки осуществляются в течение заданного времени, поэтому имеют свои регуляторы и электрические связи с соответствующими узлами полярографа. Так, для регулируемой электрохимической очистки ИЭ, выделения ртути или водорода из раствора на поверхности ИЭ нужна связь синхронизатора с ИПН через программатор, который и обеспечивает сложное изменение потенциала на ИЭ. По схеме ХУП строят простейшие полярографы для ИВ. Для получения улучшенных аналитических параметров в эти полярографы вводят сложные системы компенсации остаточного тока, схемы выделения пика тока, системы запоминания и последующего вычитания линии фона и т.д. [c.126]

    В химической промышленности платина применяется для изготовления коррозионностойких деталей аппаратуры. Платиновые аноды используются в ряде электрохимических производств (производство пероксодисерной кислоты, перхлоратов, перборатов). Широко применяется платина как катализатор, особенно при проведении окислительно-восстановительных реакций. Она представляет собой первый, известный еще с начала XIX века гетерогенный катализатор. В настоящее время платиновые катализаторы применяются в производстве серной и азотной кислот, при очистке водорода от примесей кислорода и в ряде других процессов. Платиновые и платино-рениевые ката чизаторы, используются при получении высокооктановых бензинов и мономеров для производства синтетического каучука и других полимерных материалов. Сплавы с родием и пал.падием применяются для конверсии в безвредные вещества токсичных компонентов выхлопных газов автомобилей. Из платины изготовляют нагревательные элементы электрических печей и приборы для измерения температуры (термометры сопротивления и термопары). В высокодисперсном состоянии платина растворяет значительные количества водорода и кислорода. На ее способности растворять водород основано применение платины для изготовления водородного электрода. [c.531]

    Поэтому при подготовке практикума авторы помимо чисто утилитарных задач — закрепить теоретические знания по электрохимии, научить студента проведению некоторых электрохимических измерений и обработке результатов — считали необходимым продемонстрировать методологические принципы электрохимического эксперимента, подготавливая обучающегося к будущим самостоятельным электрохимическим исследованиям. В этом плане особенно полезной может быть первая глава практикума, суммируюш,ая опыт, накопленный электрохимиками при очистке растворителей, реактивов, металлов, конструировании ячеек для электрохимических измерений. Авторы сочли нецелесообразным описывать в этой главе конкретные электрохимические приборы, конструкция которых часто видоизменяется, и рассмотрели лишь обш,ие схемы и принципы работы устройств, построенных на базе операционных усилителей. [c.3]

    Травление применяют для удаления поверхностного слоя кристалла после резки и шлифовки для уменьшения толщины кристалла для придания базовой области приборов необходимой геометрической формы (вытравливание углублений, рисок и т. п.), что часто делается по рисунку фотолитографическим методом для очистки поверхности перед другими технологическими операциями (вплавлением, диффузией примесей, эпитаксиальным наращиванием пленок и т. д.) для очистки изготовленных р— -переходов для выявления р— -переходов для подготовки поверхности к металлографическим исследованиям и физическим измерениям. При селективн зм травлении электрохимические методы лучше потому, что можио сделать маленький катод и приблизить его к пы-травливаемому участку полупроводника, являющегося анодом, или можно закрыть часть анода непроводящей пластинкой с отверстиями и т. п., тогда как при химическом травлении нужна защита по рисунку, что гораздо сложнее. [c.313]

    ГАЗОАНАЛИЗАТОРЫ, приборы, измеряющие содержание (концентрацию) одного или неск. компонентов в газовых смесях (см. также Газовый анализ). Каждый Г. предназначен для измерения концентрации только определенных компонентов на фоне конкретной газовой смеси в нормиров. условиях. Наряду с использованием отдельных Г. создаются системы газового контроля, объединяющие десятки таких приборов. В большинстве случаев работа Г. невозможна без ряда вспомогат. устройств, обеспечивающих создание необходимых т-ры и давления, очистку газовой смеси от пыли и смол, а в ряде случаев и от нек-рых мешающих измерениям компонентов и агрессивных в-в. Г. классифицируют по принципу действия на пневматические, магнитные, электрохимические, полупроводниковые и др. Ниже излагаются физ. основы и области применения наиб, распространенных Г. [c.454]

    Важнейшим вкладом В. А. Каргина в разработку электрохимических методов очистки и анализа веществ является усовершенствование методов электродиализа и создание пятикамерного электродиализатора [И]. Трудность очистки веществ традиционными методами с использованием трехкамерного электродиализатора была связана с рядом обстоятельств и прежде всего с процессом обратной диффузии отдельных примесей. Для достижения наиболее эффективной очистки в таких случаях требова-лась частая смена воды в боковых камерах. Это, в свою очередь, делало практически невозможным концентрирование ценных примесей. Другая трудность заключается в очистке от слабых электролитов, поскольку скорость переноса пропорциональна не концентрации самого электролита, а лишь его диссоциированной части. Для преодоления этих трудностей В. А. Каргиным была предложена новая конструкция электродиализатора, содержащая наряду с тремя основными камерами две дополнительные, включающие диафрагмы и электроды и присоединенные к боковым камерам с помощью узких каналов. К электродам боковых и вспомогательных камер прикладывается разность потенциалов, и в дополнительные камеры переносятся из боковых все удаляемые примеси. Таким образом, введение дополнительных камер позволяет предотвратить процесс обратной диффузии. Кроме того, в дополнительных камерах можно проводить концентрирование ценных примесей. Предложенная конструкция прибора позволяет также резко уменьшить расхэд воды. [c.20]

    Согласно рекомендации завода-изготовителя, при непрерывной эксплуатации прибора ЭГ-152-003 мембрана электрохимической ячейки датчика подлежит елсенедельной проверке и, при необходимости, очистке — тогда ее промывают водой, а затем,протирают спиртом. В эти же сроки следует производить корпектировку выходного сигналя анализатора по Винклеру. Через 30 суток работы анализатора завод рекомендует заменить электрохимическую ячейку на запасную, а рабочую после очистки анода и замены электролита отправить в запас. Полимерная мембрана может служить длительное время, ее заменяют в случае повреждения. [c.118]

    Применяемый нами прибор и методики снятия кривых заряжения и очистки реактивов подробно описаны в работе [7]. Кривые заряжения снимались на платиновой черни в сернокислом электролите. Активная платиновая чернь получалась электрохимическим осаждением из раствора платинохлористоводородной кислоты с добавкой ацетата свинца. Ток осаждения составлял 0,5 aj M . [c.55]

    Следует отметить еще одну особенность применения редокс-электродов для контроля процесса восстановления хрома поверхность этих электродов может покрываться продуктами как основных, так и побочных электрохимических реакций, осадками веществ, содержащихся в сточнььх водах. Вследствие этого электродная система теряет чувствительность и возникает проблема ее восстановления. Решать ее можно различными путями чаще всего это делают периодической или непрерывной механической очисткой поверхности электродов или промывкой соответствующими растворителями. Для этого погружные промышленные датчики приборов на хром (СХ-1М) снабжены мехатг-Геским устройством — ссткой из капроновых нитей, которая совершает возвратно-поступательное движение и очищает поверхность электродов. Устройство приводится в действие портативным электроприводом, укрепленным на головке датчика. От различных замасливателей электроды очищают промывкой растворителями. [c.209]

    Измерение pH глубокообессоленных вод с удельной электрической проводимостью менее 0,3 мкСм/см производится в электрохимической ячейке оригинальной конструкции. Это связано со способностью вод, прошедших глубокую деаэрацию и очистку, поглошать из окружающего воздуха кислород и углекислый газ, что приводит к снижению pH воды до 6,5. Анализ этих вод, проведенный на рН-метре с обычной ячейкой, в стаканчике, является недостоверным. В этом случае используется так называемая проточная ячейка — замкнутая система, обеспечивающая проток анализируемой воды на электроды прибора. [c.56]


Смотреть страницы где упоминается термин Прибор для электрохимической очистки: [c.252]    [c.208]    [c.322]    [c.18]    [c.136]    [c.137]    [c.355]   
Работа со ртутью в лабораторных и производственных условиях (1972) -- [ c.46 , c.47 , c.50 , c.51 ]

Работа со ртутью в лабораторных и производственных условиях (1972) -- [ c.46 , c.47 , c.50 , c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Электрохимическая очистка



© 2025 chem21.info Реклама на сайте