Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярограф простой

    В прямых методах используется зависимость физикохимического свойства, называемого аналитическим сигналом или просто сигналом, от природы вещества и его количества или концентрации. Свойством, зависящим от природы вещества, является, например, длина волны спектральной линии в эмиссионной спектроскопии, потенциал полуволны в полярографии и Т.Д., а количественной характеристикой служит интенсивность сигнала - интенсивность спектральной линии в первом случае, сила диффузионного тока во втором и т.п. В некоторых случаях связь аналитического сигнала с природой вещества установлена строго теоретически. Например, линии в спектре атома водорода могут быть рассчитаны по теоретически выведенным формулам с использованием фундаментальных констант (постоянная Планка, заря электрона и т.д.). [c.125]


    Самое простое решение вопроса — капающий ртутный электрод (рис. 72). Вытянутый нижний конец сосуда, в котором находится ртуть, имеет капиллярное отверстие диаметром 0,01—1 мм. Под влиянием силы тяжести ртуть медленно вытекает из капилляра, образуя капли, которые через каждые 2—6 с падают к донному слою ртути. Поверхность капли есть поверхность соприкосновения фаз она небольшая и периодически обновляется, поэтому свойства ее постоянны. Совокупность вольтамперометрических методов, в которых применяют ртутный капающий электрод, называют полярографией. [c.283]

    Дальнейшее развитие метода, требующее жесткой синхронизации периода капания и времени поляризации электрода (вольтамперометрия, импульсная полярография), приводит к усложнению электрода. Используют более быстро капающие электроды (капилляры большого диаметра), вводят устройства для принудительного отрыва капли в заданные моменты времени. Простейшим из них является управляемый электронным таймером молоточек, ударяющий по капилляру. [c.292]

    Электроды сравнения. Для стандартизации точки отсчета, относительно которой измеряют потенциалы рабочего электрода в полярографии, также как и в потенциометрии, используют в качестве электродов сравнения электроды второго рода — хлор-серебряный, каломельный. Последний особенно прост в изготов лении и удобен в обращении при работе с насыщенным раствором хлорида калия в качестве электролита. Под названием насыщенного каломельного электрода (НКЭ) он принят в качестве стандартного в больщинстве полярографических работ. [c.293]

    Установка для амперометрического титрования может быть собрана на основе любого полярографа. Обычно для этой цели используется самая простая полярографическая установка. При этом рабочим может быть как ртутный капающий, так и твердый микроэлектрод. В качестве источников тока могут применяться аккумуляторные батареи и различные выпрямительные устройства. Сила тока измеряется гальванометром с ценой деления порядка 10 А или еще более чувствительным (М-21, М-25). В комплект установки для титрования входят также микробюретка и магнитная мешалка. Общий вид установки с твердым микроэлектродом приведен на рис. 22.5. [c.274]

    При рассмотрении переменноточной полярографии необходимо решить уравнение второго закона Фика при граничных условиях, задаваемых уравнением (40.1). Однако воспользуемся более простым приближенным методом, согласно которому затухающие синусоидальные колебания концентрации происходят вблизи некоторых средних значений концентраций с, определяемых постоянной поляризацией электрода Ео- В этих условиях полное сопротивление ячейки переменному току выражается уравнением (39.20), в которое необходимо подставить средние концентрации у поверхности электрода (т. е. с при х=0)  [c.201]


Рис. 4.15. Схема простейшего полярографа Рис. 4.15. <a href="/info/69155">Схема простейшего</a> полярографа
    Рассмотрим принципиальную схему простейшего полярографа (рис. 4.15). Капельный ртутный электрод представляет собой стеклянный капилляр 5, через который под давлением ртутного столба вытекает ртуть через равные промежутки времени (0,2—6 с). Образующиеся на конце капилляра ртутные капли отрываются от [c.106]

    В классическом варианте постояннотоковой полярографии по оси ординат регистрируется сигнал, соответствующий среднему за период капания капилляра току ячейки /. В простейшем случае назначение устройства обработки сигнала сводится к выполнению операции усреднения. Поскольку усредняющие устройства работают не идеально, на регистрируемые средние значения обычно накладывается остаточная осциллирующая составляющая сигнала с периодом ty. Несколько лучшее отношение фарадеевского тока к емкостному получается при использовании временной селекции тока, когда регистрируется ток в конце жизни каждой капли (таст-полярография). В таком режиме устройство обработки сигнала осуществляет выборку и усреднение тока в течение небольшого отрезка времени перед сменой капли (усреднение проводится для устранения высокочастотных помех), а также хранение выбранного значения тока до следующей выборки.  [c.324]

    Особенно широко применяется полярография в цветной металлургии. Здесь в большинстве случаев удается путем простых операций и за короткое время получить результаты, по точности обычно даже превосходящие другие методы анализа (в особенности при малых содержаниях вещества). Это относится в пер- [c.285]

Рис. 5.20. Схемы простейшей полярографической установки (а) и потенциостатирован-ного полярографа (<Г) Рис. 5.20. <a href="/info/1573595">Схемы простейшей полярографической</a> установки (а) и потенциостатирован-ного полярографа (<Г)
    Аппаратура, используемая в установках для амперометрического титрования, крайне проста, проще, чем в других электрохимических методах анализа, таких, как потенциометрия, кондуктометрия, полярография и др., не требует сложных электронных при-бо )ов и поэтому отличается дешевизной и простотой обращения. [c.232]

    Изображенная на рисунке простая схема имеет ряд недостатков. Поэтому в схему полярографов вводят дополнительные узлы и устройства, которые здесь [c.497]

    Из равенств (9.83) и (9.92) можно найти отношение максимальных амплитуд второй и первой гармоник фарадеевского тока /2т(0,66)//п,(0) = 5,4иЕ откуда следует, что, например, при Е = 20/и мВ максимум амплитуды второй гармоники в 9 раз меньше первой. Следовательно, при реализации переменнотоковой полярографии второго порядка возникает проблема выделения второй гармоники фарадеевского тока в присутствии шумов и значительно большего переменного тока основной частоты со. В простейшем случае частотная фильтрация может осуществляться с помощью частотно-избирательного усилителя, после которого сигнал второй гармоники подается на обычный амплитудный демодулятор. В таком случае на его выходе получается постоянное напряжение, изменяющееся в соответствии с амплитудой 12т(Лп), т е. в соответствии с модулем 2-й производной. [c.372]

    В аналитической химии дифференцирование обычно используют с двумя целями для улучшения разрешения перекрывающихся пиков и устранения влияния фона. Напомним также, что в ряде аналитических методов (например, в оже-электронной спектроскопии, дифференциальной импульсной полярографии, термогравиметрии) сигнал исходно представлен в виде производной. При обработке сигналов аналитическое дифференцирование сигналов практически не применяют, поскольку большинство реальных пиков невозможно адекватно описать простыми математическими функциями, такими, как функция Гаусса или Лоренца. В этих случаях очень удобны численные методы дифференцирования. [c.490]

    Методу квадратно-волновой полярографии подобен метод вектор-полярографии, который начинает развиваться в Советском Союзе благодаря появлению векторного полярографа типа ЦЛА. Этот метод отличается от квадратно-волновой полярографии тем, что вместо переменного напряжения квадратной формы на потенциал электрода накладывается синусоидальное напряжение малой величины. Для отделения емкостной составляющей переменного тока, имеющей фазу, сдвинутую на 90° относительно фарадеевского тока, используется фазочувствительный усилитель. Благодаря указанному решению, более простому конструктивно, метод векторной полярографии обладает всеми преимуществами квадратно-волновой полярографии и пригоден для определения плутония. [c.247]


    Оборудование. Можно использовать любой полярограф (автоматический или неавтоматический) с термостатируемой (25 °С) Н-образной ячейкой с насыщенным каломельным электродом сравнения [64]. Можно использовать и ячейку более простой конструкции с ртутным анодом [65.  [c.103]

    Оборудование. В анализе можно использовать любой автоматический или неавтоматический полярограф. Для определения достаточно двух измерений при потенциале —0,3 В, так что вполне можно обойтись простым полярографом. [c.332]

    Существует другой простой способ оценки обратимости электродного гфоцесса в классической полярографии. Для обратимого электродного [c.168]

    Легко также определить среднюю скорость вытекания. Ртуть в течение определенного времени капает из капилляра в данную среду после отделения от раствора и сушки ртуть взвешивается. Вес ртути, деленный на время (сек), в течение которого она вытекала, дает среднюю скорость вытекания ртути в данной среде. В полярографии чаще всего измеряются средние токи, поэтому необходимо измерять средние скорости вытекания. Лингейн [5] предложил очень простое устройство для быстрого определения т. Ртуть из исследуемого капилляра капает в расширенное отверстие узкого стеклянного цилиндра, предварительно откалиброванного и имеющего шкалу [c.31]

    Устройство полярографа. Простейшая полярографическая установка показана на рис. 89. В химический стакан погружен ртутный электрод он соединен резиновой трубкой с круглой воронкой, содержащей ртуть. Электрод соединен с гальванометром, ртуть соединена с движком реохорда или барабана мостика Коль-рауша. Гальванометр соединен с реохордом или барабаном мостика Коль-рауша.К концам реохорда или мостика Кольрауша присоединен аккумулятор. [c.512]

    Было предложено много конструкций электролизеров для полярографии. Простейшим из них является небольшой стакан, в который погружены РКЭ и соляной мостик НКЭ. Стакан закрыт пробкой, через которую проходит трубка для пропускания азота через раствор с целью удаления из последнего кислорода. Более сложный элемент, широко используемый в полярографии, показан на рис. 11.3. Он представляет собой РКЭ, соединенный с НКЭ посредством горизонтальной стеклянной трубки, которая перегорожена диском из синтерованного стекла и наполнена агар-агаровым гелем, содержащим хлористый калий. [c.164]

    Имеются и другие методы определения защитной присадки Santolene С с применением полярографии, хроматографии (без предварительного извлечения кислот) и т.д. Так, в работе [185] описаны три модификации хроматографических методов определения этой присадки продолжительность анализа в них составляет уже не 3 /2 ч, а всего 1 ч. Методы довольно просты и предназначены для контрольных определений. [c.214]

    Схема простейшей полярографической установки, которая может быть собрана из обычных приборов и использована в учебных целях, приведена на рис. 5.20, а. На рис. 5.20,6 представлена блок-схема полярографа с потенциостатическим заданием и контролем потенциала рабочего электрода. Отечественная промышленность выпускает полярографы и полярографические концентратомеры. Полярограф универсальный ПУ-1, пригоден для выполнения основных измерений, описанных в настоящем руководстве. Широкими возможностями обладает полярографический концентратомср РА-3, изготавливаемый в Чехословацкой республике. [c.294]

    Полярограф, включающий полярографическую ячейку с электродами и управляющую ее поляризацией систему, выдает аналитический сигнал в виде непрерывно меняющейся зависимости силы тока от приложенного напряжения, что является аналоговой формой представления информации. Современные ЭВМ являются цифровыми и для принятия ими аналоговой информации она должна быть преобразована в цифровые коды. Для этого используют аналогово-цифровые преобразователи (АЦП). Аналитический результат — содержание определяемых веществ в пробе — может быть выдан прямо на циф-ропечать. Модернизированная ( облагороженная ) полярографическая кривая с учетом токов фона, токов заряжения и т. д. должна выводиться на самописец через цифро-аналоговый преобразователь (ЦАП). В таком простейшем варианте ЭВМ используется главным образом как регистратор. Более сложными являются схемы диалогового режима, [c.302]

    Схема простейшей устанО)Вки для полярографии приведена на рис. Д.95. Постоянное напряжение 2—4 В (например, от аккумулятора) прилагают к измерительной проволоке потенциомет- )а сопротавлением 10—20 Ом напряжение, поступающее от потенциометра на полярографическую ячейку, варьируют посредством скользящего контакта. Ток электролитической ячейки измеряют чувствительным гальванометром. [c.281]

    Осциллографичеокая полярография разделяется на прямую (кривые г—ф), простую дифференциальную, дробнодифференциальную (кривые разностную, которая позволяет увели- [c.168]

    Для проведения амперометрического титрования можно использовать и полярографы постоянного тока. Однако целесообразно использовать более простые и дешевые установки, изобрз женные иа рис. 165 и 166, которые могут быть собраны из деталей непосредственно на лабораторном столе. [c.233]

    В первых жидкостных хроматографах (тина ионообменных хроматографов) прошедшая через колонку подвижная фаза с комиоиеитами пробы просто собиралась в небольшие сосуды, а затем методами титриметрии, колориметрии, полярографии и т.д. определялось содержание комиоиеита в этой порции. Т.е. процессы разделения пробы п определения ее количественного состава были разделены во времени и пространстве. В современном жидкостном хроматографе эти процессы объедипепы в одном приборе. [c.19]

    Электрохимические свойства пероксикарбонатов (ПК) исследовали также Прокопчик и Вашкялис [262, с. 150], которые показали, что полярографический метод вполне пригоден для определения ПК в растворах и для исследования их превращений. Описан метод определения с помощью полярографии пероксодисульфата калия в латексах, получаемых эмульсионной полимеризацией (Кольтгоф и др.). Латекс разбавляют водой и фильтрат после отделения полимера полярографируют на фоне серной кислоты. Этот метод оказался более точным, чем колориметрический он прост в выполнении и рекомендуется для серийных анализов. [c.168]

    Принципиачьная схема полярографа чрезвычайно проста. Полярографическая ячейка состоит из ртутного капающего электрода (капилляр диаметром 0,03 мм), который соединен с резервуаром, дно которого заполнено ртутью. Конец капилляра опущен в исследуемый раствор, образующиеся капли ртути падают сквозь раствор на дно сосуда. Современный ртутно-капающий электрод представляет собой высокотехнологичное изделие, обеспечивающее полную герметизацию ячейки и рабочего объема ртути. Стряхивание растущих капель — принудительное и осуществляется молоточком, управляемым электронным устройством. Стоимость такого комплекта весьма высока. Напряжение, приложенное между капельным электродом и электродом сравнения (донной ртутью), вызывает ток, который приводит к поляризации электродов (изменению поверхностного потенциала). Влияние проходящего тока на величину потенциала поляризуемого электрода соответствует площади его поверхности. При этом электрод сравнения, обладая существенно большей площадью, практически не поляризуется. Принимая его потенциал равным нулю (точка отсчета в эксперименте), можно записать, что приложенное напряжение поляризации близко к потенциалу ртутно-капельного электрода Е = -Е . [c.740]

    Полярография. В основе полярографического метода лежат катодные процессы (присоединение электрона к веществу на ртутном капающем электроде). Полярографический метод создал чешский химик Я. Гейровекий (1922), за что был удостоен Нобелевской премии (1959). Принципиальная схема полярографа очень проста (рис. 26). Он состоит из капающего ртутного микроэлектрода с непрерывно обновляющейся поверхностью и электрода сравнения (ртутный или другой нормальный электрод). Площадь катода значительно меньше площади анода, поэтому решающими в этом случае являются процессы поляризации катода. Органиче- [c.46]

    В настоящее время в ряде стран производится множество различных типов полярографов как с фоторегистрацией кривых (эти полярографы более просты), так и самопишущих, где кривая чертится сразу на обыкно-вегшую бумагу. В промышленности и аналитических лабораториях удобнее применять полярографы второго типа, так как ход кривой можно наблюдать уже в процессе ее записи и отпадает необходимость в проявлении фотобумаги. [c.27]

    Детальное обсуждение и сравнение твердых электродов, применяемых в полярографии, можно найти в статье Адамса [85]. Из предложенных в последнее время новых типов электродов наиболее обещающими представляются карбидный [86, 87] и графитовый [88] электроды. Однако наличие у графита пор нередко вызывает нежелательные осложнения. Более удобен так называемый электрод из углеродной пасты [85, 89]. Обычно паста готовится простым смешением одного грамма древесного угля с несколькими миллилитрами несмешивающегося с водой растворителя, например. бромоформа четыреххлористого углерода. Паста выдавливается через тонкую тефлоновую трубку, образуя по выходе из нее электрод. Электрический контакт с пастой осуществляется изолированным от раствора платиновым контактом, проходящим через тефлон. Область работы такого электрода между +1,2 и —1,0 в относительно нас. к. э. Борокарбидный электрод работает в области потенциалов от +1,0 до —1,0 в в кислой среде и от +0,6 до—1,4 в в щелочной среде. [c.43]

    Векки [38] для определения количества электричества использовал очень простой приближенный метод. Записывалась кривая сила тока — напряжение с предельным током /о и с очень малым объемом предварительно деза-эрированного раствора в специальной микроячейке. Затем проводился электролиз со ртутным капельным электродом при потенциале предельного тока, причем напряжение на ячейку подавалось от обычного полярографа. После того как первоначальная высота волны уменьшалась примерно на 20%, электролиз прекращался, раствор для выравнивания концентрации во всем его объеме перемешивался и затем снималась новая полярограмма, па которой предельный ток волны составлял уже Число электронов рассчитывалось по уравнению (13), в котором величина Q принималась равной [c.246]

    Полярокулонометрию впервые предложили Прост и Поос [56]. В сущности этот метод представляет собой полярографию, в которой галованометр заменен водородным кулонометром. Указанные авторы нашли хорошее соблюдение пропорциональности между концентрацией деполяризатора в растворе и объемом газа, образующегося в кулонометре. Однако ошибка определения при этом несколько выше, чем при непосредственной регистрации тока. [c.251]

    Собственно осциллографическая полярография. Под собственно осциллографической полярографией подразумевается ряд методов, основанных на поляризации электрода либо переменным напряжением или током, либо отдельными импульсами напряжения или тока с осциллографи-ческим наблюдением получаемых кривых. В соответствии с условиями поляризации различают методы осциллографической полярографии при заданном напряжении и при заданной силе тока. По типу применяемых приборов оба эти вида осциллографической полярографии разделяются еще на два метода импульсный (или одноцикличный) метод, требующий сложной электронной схемы, и метод с переменным током (многоцикличный метод), при котором используется более простая аппаратура. [c.470]


Смотреть страницы где упоминается термин Полярограф простой: [c.20]    [c.314]    [c.119]    [c.168]    [c.35]    [c.76]    [c.437]    [c.22]    [c.256]   
Применение электронных приборов и схем в физико-химическом исследовании (1961) -- [ c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Полярограф

Полярография



© 2025 chem21.info Реклама на сайте