Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая и электрохимическая очистка поверхности металла

    Обезжиривание поверхности металла производится обработкой ее органическими растворителями или щелочными растворами, а также электрохимическими методами. Снятие ржавчины, окалины и других загрязнений производится механическим, химическим или электрохимическим способом. Хороши результаты дает пескоструйная очистка поверхности металла. Небольшие поверхности можно очищать металлическими щетками, на шлифовальных станках и т. п. При механической очистке поверхность изделий делается шероховатой. Покрытия, наносимые напылением или гальваническим методом, сцепляются с шероховатой поверхностью металла лучше, чем с гладкой. Если же изделие после покрытия должно иметь глад ую поверхность, то применяется предварительная шлифовка, а в некоторых случаях и полировка покрываемой поверхности. [c.158]


    Очистку поверхности металла можно осуществлять разными способами механически (обработка ручным или механизированным инструментом, струйная очистка, полирование и шлифование), термически (обжиг), химически и электрохимически (отмывка, обезжиривание, удаление ржавчины, травление). [c.124]

    Из цветных металлов широкое применение в промышленности получили алюминий, медь, цинк, магниевые и титановые сплавы и др. Эти металлы в той или иной степени подвержены коррозии, в связи с чем они нуждаются в противокоррозионной защите. Защита может быть осуществлена лакокрасочными покрытиями, однако адгезия последних к таким поверхностям хуже, чем к поверхности черных металлов. Для улучшения адгезии, создания пористых оксидных слоев и повышения долговечности защитного покрытия поверхность цветных металлов перед окраской должна быть подвергнута очистке, обезжириванию и электрохимическому или химическому оксидированию [1, с. 258—267]. Эффективность защиты цветных металлов в значительной мере определяется качеством подготовки поверхности под окраску. [c.120]

    ТРАВЛЁННЕ — химическая и электрохимическая обработка поверхиости твердых материалов. Используется для удаления загрязнений, окислов (в частности, ржавчины), окалины, для выявления структуры материала (металла, минерала) или придания поверхности желаемой микрогеометрии, для снятия нарушенного мех. обработкой поверхностного слоя и получения структурно и химически однородной поверхностп при произ-ве полупроводниковых материалов, для придания матового вида стеклу и др. Часто применяется перед нанесением защитных покрытий, эмалированием, лужением и пайкой. Химическое Т. стали, меди, цинка и магния осуществляют в водных растворах серной, соляной или азотной кислоты стекла — в плавиковой кислоте алюминия — в водных растворах едких щелочей нержавеющих и жаростойких сталей, титана — в щелочных расплавах. Из-за неоднородности поверхиости (наличия пор, трещин и т. п.) химическое Т. металлов сопровождается действием гальванических микроэлементов. Электрохимическое Т. проводят в тех же средах, а также в растворах солен с применением катодного, анодного или переменного тока. При Т. на поверхности происходят хим. взаимодействие окисной пленки или материала основы с раствором или расплавом электрохим. растворение металла (на анодных участках микроэлементов или нри анодном травлении) электрохим. выделение водорода (на катодных участках микроэлементов или при катодном травлении) электрохим. выделение кислорода (при анодном травлении). Хим. очистке поверхности способствуют разрыхление и отрыв окалины под мех. воздействием [c.582]


    Необходимо отметить, что процессы очистки, определяющие в значительной степени качество покрытия, имеют особенно большое значение в процессах вакуумной металлизации.. Состояние поверхности металла в первые моменты осаждения покрытия определяет качество его адгезии, пористость, хрупкость и когезионную прочность. Применяемые химические и электрохимические процессы не обеспечивают достаточной степени очистки и имеют другие недостатки, в частности, требуют больших количеств технической воды, которая большей частью затем сбрасывается в сток. Поэтому весьма перспективны новые методы, например электронно-лучевая обработка и ионная бомбардировка. При ионной бомбардировке поверхность металла почти не разогревается, в то время как при электронно-лучевой обработке поверхность металла нагревается до высоких температур. При помощи ионной бомбардировки очистка поверхности происходит значительно быстрее, чем при традиционных методах химической или электрохимической обработки, кроме того, она может заменить процесс травления. [c.83]

    ХИМИЧЕСКАЯ И ЭЛЕКТРОХИМИЧЕСКАЯ ОЧИСТКА ПОВЕРХНОСТИ МЕТАЛЛА [c.123]

    Разработаны принципы комплексной защиты техники [21], включающую защиту от биоповреждений составами, содержащими вещества многоцелевого назначения (обладающими свойствами ингибиторов коррозии и т. п.) и неопасными для людей. Защита осуществляется нанесением тонких пленок слабых водных и эта-нольных растворов этих веществ на поверхность эксплуатирующихся конструкций распылением в замкнутых воздушных пространствах и с ограниченным доступом воздуха составов,, содержащих легколетучие вещества с фунгицидными свойствами введением указанных веществ в растворы для химического и электрохимического полирования поверхностей металлов и нанесения покрытий в условиях производства и ремонта техники применением средств дополнительной защиты (пассивирующие растворы, рабоче-консервационные масла, легко снимаемые покрытия, содержащие биоциды) приданием биоцидных свойств растворам для очистки поверхностей (травящие, обезжиривающие, нейтрализующие растворы и пасты) сочетанием приведенных методов со статической или динамической осушкой воздуха добавлением биоцидных веществ в состав полимерных материалов, ЛКП на стадии приготовления их технологических смесей использованием биоцидных полимеров. [c.97]

    Обработку и очистку поверхности металла перед нанесением защитных покрытий производят в основном тремя способами механическим, химическим и электрохимическим. [c.121]

    Электрохимическое обезжиривание, несмотря на высокую эффективность, применяют, в основном для очистки поверхности металла от небольшого слоя жира. Если поверхность деталей имеет значительные жировые Загрязнения, ее предварительно обезжиривают химическим методом. [c.79]

    Электрохимическое травление металлов (главным образом черных) применяют для очистки поверхности от сравнительно толстых оксидных слоев (окалины, ржавчины и т, п,) перед нанесением на них различных покрытий. По сравнению с химическим травлением сокращается время обработки, а также расход химикатов. Отличают анодное и катодное травление. При анодном травлении растворяющийся металл, а также выделяющиеся пузырьки кислорода механически удаляют оксиды с поверхности. Реакция протекает интенсивно, поэтому есть опасность перетравливания. Катодное травление связано с частичным электрохимическим восстановлением оксидов, а также с их механическим удалением с поверхности пузырьками водорода. Оно обычно сопровождается наводораживанием металла. В обоих вариантах применяют электролиты на основе серной (реже соляной) кислоты плотности тока составляют 0,5- --ь5 кА/м время анодного травления 1—5 мин, катодного — 10—15 мин. Из-за низкой рассеивающей способности ванны травление изделий со сложным профилем протекает неравномерно. [c.348]

    Химическая технология с каждым годом играет все большую роль при создании современных машин и приборов. На любом машиностроительном предприятии применяют разные видьи химической очистки поверхности металлов, нанесение на изделия различных покрытий химическим и электрохимическим путем для защиты от коррозии, придания декоративных и специальных свойств. В связи с этим большое значение приобретает интенси-. фикация упомянутых процессов, улучшение качества покрытий, сохранение механических свойств покрываемых изделий. [c.3]

    В гл. I, 24 мы познакомились с сорбцией и, в частности, с адсорбцией, с их ролью в гетерогенном катализе. Поверхностные явления, в частности адсорбция, играют большую роль в самых различных областях техники. Для нас важно знать, что адсорбция изменяет не только поверхностные, но и объемные свойства полупроводниковых материалов, влияет на работу выхода электронов с поверхности твердых тел. С адсорбцией и десорбцией приходится сталкиваться в процессах химического и электрохимического травления и полирования полупроводников и металлов, при очистке поверхности твердых тел от загрязнений и т. д. Адсорбция и связанные с ней изменения поверхностного натяжения и разности потенциалов на границе раздела фаз играют громадную роль в коллоидной химии и электрохимии. Адсорбция используется для очистки газов и жидкостей, для удаления остатка газов из вакуумных приборов, для поглощения ОВ (в противогазах), для извлечения ценных веществ из растворов и газов и из отходов различных производств с целью рекуперации, для разделения и анализа смесей (хроматография) и т. д. [c.168]


    Селективную (электрохимическую) очистку осуществляют с целью удаления оставшихся после химической очистки металлов (железа, меди, цинка, свинца, хрома) и органических примесей. Для этого значение pH сернокислых электролитов доводят 5 —10 7о-м раствором серной кислоты, а сульфаминовые—10 %-м раствором сульфами-новой кислоты до 2,0 — 2,5 и прорабатывают их постоянным током в течение 18 — 24 ч при температуре 50 — 60 °С и интенсивном перемешивании сжатым воздухом. Плотность тока при этом поддерживают в пределах 0,3 — 0,5 А/дм , а в холодном электролите или при отсутствии перемешивания — 0,1 — 0,2 А/дм . В качестве катодов применяют стальные гофрированные иод углом 50 — 60° обезжиренные и активированные (а еще лучше— и никелированные) пластины. Площадь их поверхности должна быть не менее 30 дм на 1 м длины катодной штанги. [c.124]

    После обезжиривания, химического или электрохимического травления и промывок в воде перед операцией цинкования металл подвергают флюсованию. Эта операция осуществляется для окончательной очистки ог загрязнений поверхности металла, предохранения его от окисления, а также с целью улучшения смачиваемости поверхности изделия расплавом. Если цинкование проводят в расплаве, не содержащем алюминий, применяют расплавленный флюс (мокрое цинкование), состоящий из смеси 42—43% хлористого аммония, 13—14% окиси цинка и 42—43% хлористого цинка. Если в расплав цинка вводят алюминий, то применяют флюс, которым может служить, например, 50%-ный водный раствор хлористого цинка. [c.113]

    Среди первых наибольшее распространение получили методы нанесения покрытий постоянного действия и специальной электрохимической и химической обработки поверхностей металлов, из второй группы — методы полной или частичной герметизации с использованием поглотителей влаги (статическая осушка воздуха, очистка окружающей атмосферы от загрязнений, поддержание оптимальных температурных режимов). [c.26]

    Качество очистки поверхности после химической и электрохимической подготовки (обезжиривания, травления, полирования, активации) оценивается при внешнем осмотре изделия. Поверхность должна быть чистой и равномерно смачиваться водой. Если детали очищены и обезжирены недостаточно тщательно, вода будет собираться в капли. Это самый быстрый, простой, по достаточно эффективный способ оценки качества подготовки. Применение физико-химических методов контроля затруднительно, так как после операций травления поверхность металла очень активна и быстро взаимодействует с растворами и газами, находящимися в воздухе. [c.142]

    Процесс нанесения электрохимических покрытий включает несколько стадий. 1. Предварительная обработка поверхности металлов с целью очистки деталей от жировых загрязнений, оксидов, а также для уменьшения шероховатости (повышение класса шероховатости) путем химической, электрохимической [c.143]

    Направление научных исследований армированные пластмассы, термопластики, изоляция, органические и неорганические покрытия, эластомеры химическая очистка металлических изделий химические и электрохимические процессы обработки поверхности металлов новые специальные материалы и технология их производства. [c.37]

    После обезжиривания в органических растворителях на поверхности деталей все же остается очень тонкая пленка жиров, которая, тем не менее, препятствует прочному сцеплению покрытия с основным металлом. Поэтому после очистки в органических растворителях, как правило, проводят химическое или электрохимическое обезжиривание. Во многих случаях, особенно при отсутствии на поверхности деталей нефтяных масел, ограничиваются обезжириванием в щелочных растворителях. [c.91]

    Основным компонентом грунта, определяющим механизм электрохимической коррозии, является пигмент (см. раздел 8.3). Пигменты на основе свинца, из которых наиболее распространен свинцовый сурик, эффективны для защиты поверхности изделий из черных металлов, особенно тех, которые нельзя подвергнуть дробеструйной обработке или очистке химическими методами. Все более широкое применение находят плюмбат кальция и металлический свинец. Эти пигменты рекомендуют также применять для оцинкованной горячим способом стали [12, 13]. Свинцовые пигменты наиболее широко используют для производства грунтов. Однако в настоящее время серьезную конкуренцию им составляет ряд грунтов на основе других пигментов, не содержащих свинец. К ним относятся металлический цинк и в последнее время фосфат [c.499]

    Известен ряд других примеров разрушения металлов химической коррозией в комбинации с механической эрозией. Как показано в главе I, многие коррозионные процессы, возможные с термодинамической точки зрения в том смысле, что они вызывают уменьшение количества свободной энергии, тем не менее не имеют места, так как они быстро прекращают свое действие вследствие образования защитных продуктов коррозии. Если какой-либо участок поверхности постоянно протирается, то продукты коррозии снимаются по мере их возникновения, и коррозионный процесс может продолжаться. Действительно там, где механизм коррозии электрохимический, она может при этих условиях достигнуть исключительной интенсивности. Опыты с тридцатью шестью комбинациями металлов и жидкостей показали что очищенный металл часто становится анодом по отношению к неочищенному благодаря снятию защитной пленки, и ток, проходящий между очищенным и неочищенным металлом, наибольший обычно там, где при отсутствии очистки процесс прекращается сам собой. Таким образом при непрерывной шлифовке одной и той же точки большой поверхности, погруженной в раствор, мы можем получить именно такую комбинацию маленькой анодной поверхности и большой катодной поверхности, которая так часто приводит к интенсивной локализованной коррозии. [c.602]

    Поверхность изделия после обработки на металлорежущих станках, полировки всех видов, ручной зачистки и других операций также подвергают дробеструйной очистке, так как на блестящей поверхности, образующейся при этом, нельзя создать прочную клеевую пленку, обеспечивающую надежное сцепление резины с металлом. После дробеструйной обработки правильно подготовленная под гуммирование поверхность металла должна быть шероховатой на ошупь, матовой, ровного серого цвета, без характерного металлического блеска. При химическом и электрохимическом травлении также получается шероховатая матовая поверхность металла. Однако такой способ обработки поверхности под гуммирование применяют редко, что обусловлено сложностью процесса нейтрализации травленых деталей. [c.52]

    Разные способы очистки электродов из благородных металлов (химические, электрохимические, их сочетание) рассмотрены в монографиях Адамса и Хоара [52, 64]. Часто рекомендации по предварительной подготовке электродов сводятся к выдерживанию их в тех или иных растворах. Это понятно для систем, в которых адсорбция электрохимически активных частиц на поверхности играет важную роль, например, в системах Гг/Г (где Г = С1, Вг, I), Н+/Н2 и других, либо когда необходимо достичь определенной степени окисленности поверхности, например, в системах О2/Н2О Се + +. В других случаях растворы, в которых предлагается выдерживать электроды, подобраны эмпирически, их труднее обосновать. [c.116]

    Основным недостатком электрохимических методов очистки сточных вод является то, что во многих случаях они требуют высоких затрат электроэнергии и металла, являющихся пока дефицитными. В ряде с.тучаев электрохимические процессы, протекающие при обработке сточных вод, характеризуются низкими выходами по току (анодное окисление и катодное восстановление органических примесей при невысоких их концентрациях, перера-ботка концентрированных сточных вод методом электродиализа). Применение этих методов часто связано с необходимостью предварительной очистки еточных вод от грубодисперсных примесей или их доочистки различными химическими и физяко-химичеокими методами (нейтрализацией, фильтрованием, сорбцией и др.). Широкое применение электрохимических методов в практике очистки сточных вод сдерживается также отсутствием хороших конструктивных разработок отдельных узлов производственных установок, необходимостью очистки поверхности электродов и межэлектродного пространства от механических примесей и т. д. [c.94]

    Щелочные водные растворы применяют при химическом и ультразвуковом обезжиривании и очистке металлических поверхностей. Кислотные водные растворы (неорганические кислоты в смеси с поверхностно-активными веществами) применяют для обезжиривания и травления металлов. Органо-щелочные эмульсии (например, смесь моноэтаноламина с поверхностно активным веществом) одновременно обезжиривают и пассивиру ют поверхность металла. Синтетические моющие средствг (СМС) — смеси химических веществ, выпускаются промышлен костью в готовом виде. Синтетические моющие средства одно временно обезжиривают и очищают черные и цветные металлы Рецептуры для химического и электрохимического обезжири вания, травления поверхностей цветных и черных металлов растворов для обезжиривания в ультразвуковом поле и техно логические рекомендации по обезжириванию приведены в ра боте [17]. [c.84]

    Промышленное значение приобрели также химические методы металлизации. Так, используется электролизный способ осаждения металлов на поверхность изделий из полимерных материалов. Электрохимическое осаждение металлов возможно только при условии предварительного нанесения на поверхность пластмасс электропроводящего слоя. Методы нанесения этого слоя могут быть различными. Наиболее удобно химическое осаждение металлов. В этом случае процессы электрохимического и химического осаждения осуществляют в одном производственном потоке. Вначале выполняют необходимые подготовительные операции по очистке поверхности пластмассовых изделий (обезжиривание и промывку), затем изделия погружают в раствор ЗпС . При этом проводят процесс сенсибилизации для образования каталитически активного слоя све-жевосстановленного металла. Поэтому приходится использовать два раствора (один для сенсибилизации, второй — для активации). После сенсибилизации и промывки изделие погружают в раствор нитрида серебра. Необходимо учитывать, что сенсибилизирующий раствор быстро окисляется кислородом воздуха, а активирующий раствор легко загрязняется соединениями олова. Поэтому очень важен строгий контроль за процессом и тщательная промывка обработанных изделий. Примеси могут препятствовать нормальному ведению процесса металлизации (например, своевременному восстановлению металла). Покрытие металлом полимерных изделий — заключительная стадия технологического цикла. Нанесение слоя меди осуществляют за счет восстановления этого металла из щелочных растворов двухвалентных комплексов с помощью формальдегида. Технология электролитического осаждения металлов хорошо разработана для ряда полимеров, но машино-аппаратур-ное оформление является громоздким и дорогостоящим. [c.347]

    При использовании в качестве анода железных или алюминиевых электродов происходит их электролитическое растворение, при котором в сточную воду переходят ионы этих металлов, превращающиеся в гидроксиды или основные соли этих металлов, обладающие коагулирующей способностью. На этом принципе основан процесс электрокоагуляции загрязнений сточных вод. При электрокоагуляции сточных вод, содержащих тон-кодиспергированные загрязнения, могут идти и другие электрохимические и физико-химические процессы, такие как электрофорез, катодное восстановление растворенных в воде органических и неорганических веществ, химические реакции между ионами железа или алюминия и содержащимися в воде ионами с образованием нерастворимых солей. Поэтому эффект очистки воды при электрокоагуляции в ряде случаев более высокий, чеМ при ее обработке одинаковыми, в пересчете на металл, дозами солевых коагулянтов. При использовании нерастворимых электродов пузырьки выделяющихся газов сорбируют на своей поверхности загрязнения и, поднимаясь вверх, увлекают их за собой. На этом принципе основан процесс электрофлотации. [c.110]

    Особенно трудно получить количественные данные для полуреакций металл — ион металла в связи с трудоемкостью приготовления чистых и воспроизводимых поверхностей электродов. Описаны способы очистки воды для электрохимических измерений [13]. Тщательное удаление органических примесей позволяет получать воспроизводимые результаты измерений ток — напряжение . Для металлов, легко дающих обратимый или почти обратимый потенциал в присутствии одноименных ионов (Си, Ag, Zn, С(1, Нд), плотность обменного тока сравнительно высока следовательно, при плотностях тока, обычно используемых в электроанализе, активационный сверхпотенциал невелик. Переходные металлы (например, Ре, Сг, N1, Со и др.), наоборот, дают чрезвычайно низкие обменные токи [19]. Эти металлы в растворах своих ионов ведут себя не в соответствии с формулой Нернста из-за влияния других потенциалопределяющих систем, что приводит к появлению смешанного"потенциала при наличии двух или более окислительно-восстановительных пар. Трудно также провести количественные исследования (особенно на твердых электродах) кинетики полуреакций, проходящих с обменом электронами между окислителями и восстановителями, находящимися в растворе. Так, убедительно доказано [20] (см., например, рис. 14-4), что в присутствии сильных окислителей или при высоких положительных значениях потенциала поверхность платины покрывается оксидной пленкой. Эту пленку можно удалить путем электрохимического или химического восстановления. Такие оксидные пленки, так же как адсорбированные слои органических примесей [13, 21], обычно понижают силу обменного тока и, следовательно, увеличивают поляризацию при данной плотности тока. [c.295]


Смотреть страницы где упоминается термин Химическая и электрохимическая очистка поверхности металла: [c.239]    [c.83]    [c.422]    [c.9]    [c.210]    [c.22]    [c.208]    [c.383]    [c.148]   
Смотреть главы в:

Коррозия и защита металлов 1959 -> Химическая и электрохимическая очистка поверхности металла




ПОИСК





Смотрите так же термины и статьи:

Металлы очистка

Металлы химические

Очистка поверхности

Поверхность металла

Химическая очистка поверхности

Химические поверхности

Электрохимическая очистка

Электрохимический ряд металлов



© 2024 chem21.info Реклама на сайте