Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кривые титрования комплексометрического

Рис. 10. Кривые титрования Мд +, Са + и Ва + раствором ЭДТА при различных pH раствора (Шварценбах Г., в сб. Комплексометрия , Комплексометрическое титрование, Рис. 10. <a href="/info/8055">Кривые титрования</a> Мд +, Са + и Ва + <a href="/info/1848445">раствором ЭДТА</a> при различных pH раствора (Шварценбах Г., в сб. Комплексометрия , Комплексометрическое титрование,

    Существует две взаимосвязанных причины, по которым комплексы, образованные монодентатными лигандами, в общем не подходят для комплексометрических титрований. Чтобы разобраться в этих трудностях, обратимся снова к системе цинк(П)—аммиак. Какие возникнут проблемы, если мы попытаемся титровать раствор 2п(Н20) стандартным раствором аммиака в воде Во-первых, в связи с тем, что не существует одного цинк-аммиачного комплекса, более устойчивого, чем другие, ступенчатые константы образования близки по своим значениям и добавление аммиака приводит лишь к изменению соотношений в смеси комплексов, при этом никогда не достигается простое стехиометрическое соотношение между аммиаком и цинком (II). Во-вторых, в связи с умеренной устойчивостью аммиачных комплексов цинка ступенчатые константы образования относительно малы, и образование даже такого наиболее распространенного комплексного иона, как 2п(ЫНз)5 , который образуется далеко за теоретической точкой эквивалентности, требует большого избытка свободного аммиака. Так, в процессе добавления титранта концентрации свободного аммиака и различных аммиачных комплексов цинка изменяются настолько постепенно, что на результирующей кривой титрования никогда не проявляется точка эквивалентности. [c.181]

    Анализ сходимости группы методов с применением йода для минерализации пробы показывает, что точность методов с комплексометрическим титрованием и йодометрическим определением свинца значительно лучше, чем при титровании молибденовокислым аммонием (кривая 20). [c.34]

    В последнее время в ГЕОХИ АН СССР разработан высокочастотный комплексометрический метод определения содержания окиси иттрия в смеси с окисью диспрозия или окисями других р. 3. э. Определение осуществляется по двум известным величинам по навеске смеси окислов, подлежащих анализу, выраженной в миллиграммах, и по суммарному количеству обоих металлов во взятой навеске, выраженному в миллимолях. Это количество определяется по расходу раствора комплексона при в. ч. т. до точки перегиба на кривой титрования. Расчет процентного содержания иттрия в смеси производится по формуле [c.207]

    При комплексометрическом титровании на кривой титрования может быть несколько точек перегиба, если х> (сравни с многоосновными кислотами) когда протоны конкурируют с ионами металла за лиганд Ь, форма кривой зависит от pH. Металлохромный индикатор представляет собой лиганд (1п), взаимодействующий с металлом с образованием окрашенного комплекса, который менее устойчив, чем комплекс металла с титрантом  [c.297]


    Кривые, подобные изображенным на рис. 7-2, называются кривыми титрования. График, построенный по аналогичным данным, для окислительно-восстановительного, осадительного или комплексометрического титрования имеет те же характеристики. [c.175]

Рис. Т-6. Кривая индикаторного комплексометрического титрования ионов кальция. Рис. Т-6. <a href="/info/596286">Кривая индикаторного</a> <a href="/info/219677">комплексометрического титрования</a> ионов кальция.
    Мы не будем рассматривать здесь различные типы измери тельных ячеек и приборов, выпускаемых промышленностью, и технику работы на них — для этого существуют специальные руководства. Типы кривых осциллометрического титрования в основном сходны с кондуктометрическими. Но в осциллометрии ветви кривых линейны только в том случае, если измерения проводят в области перегиба характеристических кривых и не происходит слишком сильных изменений электропроводности. В противном случае на кривых в большей или меньшей степени возникают плавные изгибы. При проведении измерений в выбранной оптимальной рабочей области получают такую же, а иногда даже большую точность измерений, чем в кондуктометрии. Поэтому области применения осциллометрии и кондуктометрии совпадают, иногда осциллометрия даже более предпочтительна. Это происходит в тех случаях, когда важны такие преимущества осциллометрии, как возможность безэлектродных измерений и увеличение чувствительности с уменьшением диэлектрической проницаемости. Осциллометрик используют для индикации кислотно-основного, осадительного и комплексометрического титрования различных типов, а также при титровании агрессивных растворов и в неводных средах. Она пригодна и для решения различных кинетических проблем при исследовании процессов кристаллизации, растворения (на- пример, гидраргиллита в алюминатном щелоке), омыления, этерификации, полимеризации, самоокисления и т. д. Метод ос-Циллометрии находит применение в фазовом анализе, например при изучении процесса плавления, затвердевания, фазового обмена, расслоения, для построения диаграмм состояния и т.д. Особенно важным является использование осциллометрии для Контроля и регулирования процессов производства. Этот метод пригоден для неразрушающего анализа ряда продуктов или содержимого ампул. [c.336]

    Многие ионы металлов (а косвенно и анионы) можно определить комплексометрическим титрованием. Молекулы воды, связанные ионами металлов, замещаются монодентатными лигандами ступенчато. Это приводит к плавно изменяющимся кривым титрования, не имеющим аналитического значения. Поэтому классические методы комплексообразования не имеют большого значения, исключая определение цианидов по Либиху [c.79]

    Если к титруемой кислоте добавить ионы металла, образующие с кислотой комплексы, то ход кривой претерпевает характерные изменения. В этом случае кроме реакции нейтрализации одновременно происходит комплексообразование, влияющее также на концентрацию водородных ионов. Таким образом, анализ кривых нейтрализации растворов может быть использован для доказательства и количественного исследования комплексообразования. За последнее время особенно много в этой области сделано Шварценбахом с сотрудниками, которые провели многочисленные систематические исследования процессов комплексообразования с аминополикарбоновыми кислотами и другими хелатообразователями. Эти исследования послужили основой очень важного метода комплексометрического титрования .  [c.198]

    Сравнение различных окончаний анализа показывает, что методы с гравиметрическим и йодометрическим (за исключением кривой 7) определением свинца несколько уступают по точности методам с комплексометрическим титрованием. [c.34]

    Когда комплексометрическое титрование проводят стандартным раствором полидентатного лиганда, трудности, связанные с использованием монодентатных лигандов, исчезают (за исключением возможности медленного протекания реакции). Большинство полидентатных лигандов, используемых в комплексометрии, занимают несколько или даже все координационные места центрального атома, поэтому образуются комплексы металл — лиганд с мольным соотношением один к одному, и стехиометрия реакции титрования проста. Кроме того, полидентатные лиганды обычно образуют более устойчивые комплексы, чем химически похожие монодентатные лиганды, поэтому получаются отчетливо выраженные кривые титрования. Чтобы проиллюстрировать последнее утверждение, сравним устойчивость гексааммиачного комплекса никеля(II) Ы1(ЫНз)2+ и комплекса, образующегося в соотношении один к одному между никелем (II) и лигандом Ы,Ы,Ы, Ы -тетра(2-аминоэтил)этилендиамином (часто называемого пентен), который имеет следующую структурную формулу [c.181]


    Рассмотрим общие уравнения кривой комплексометрического титрования. Выражение для условного равновесия имеет вид [c.329]

Рис. Т-5. Кривая комплексометрического титрования ионов меди. Рис. Т-5. <a href="/info/783084">Кривая комплексометрического титрования</a> ионов меди.
    Точка эквивалентности определяется пересечением двух ярямьгх. Если реакции ионов протекают неколичественно, изменение электропроводности при титровании происходит нелиней-iHO. Поэтому вблизи точки эквивалентности всегда наблюдается Абольшкй или меньший плавный изгиб кривой (см.рис. Д.134, а), который тем сильнее, чем больше растворимость образующегося осадка в осадительном титровании или чем меньше кон-1станта устойчивости комплекса в комплексометрическом тит- ровании. Если искажения кривых титрования не слишком ве- лики, при оценке ими можно пренебречь. Для этого необхо- димо, чтобы несколько точек (обычно достаточно пяти) рас- [c.323]

    При выполнении комплексометрических высокочастотных титрований (в. ч. т.) существенно, чтобы концентрация титруемого раствора соответствовала максимальной крутизне характеристической кривой, построенной для данной ячейки В этом случае на кривой титрования при определенных соотношениях металла и комплексообразующего вещества возникают четко выраженные перегибы, отвечающие резкому изменению электропроводности раствора в момент образования комплекса и вытеснения ионов водорода металлом из комплексообразующего вещества, например из двузамещенной натриевой соли этилендиаминтетрауксусной кислоты (ЫааНзУ). Такие перегибы отвечают определенным молярным отношениям металл лиганд. Для определения этих отношений строят графики кривых титрования, откладывая на оси абсцисс объем титранта, а на оси ординат—отсчеты по шкале индикаторного прибора, пропорциональные изменению электропроводности титруемого раствора [5.  [c.204]

    Влияние состава раствора на вид кривой титрования. Поскольку состав раствора влияет на агп< + и аг -, а следовательно, и на значение условной константы комплекса цинка (П) с ЭДТА, успех комплексометрического титрования зависит отчасти и от дополнительного комплексующего агента. [c.192]

    Д.ДЯ расчета кривой комплексометрического титрования рекомендуется использовать значения Кэф, а не значения Кабс- Если /Сэф>10 , то на кривой титрования вблизи точки эквивалентности обычно наблюдается резкое изменение значения рМ. [c.340]

    Некоторые авторы [80, 121-124], например, получили искаженные кривые потенциометрического титрования с ион-селективными электродами. Мейтес и сотр. [125-127] вывели несколько фундаментальных соотношений для определения точки перегиба в кислотно-основном, осадительном и комплексометрическом титровании. Основной вывод авторов состоит в том, что при строгом учете разбавления точка перегиба кривой и точка эквивалентности не совпадают. Уайтфилд и др. [128, 129] рассчитали кривые комплексометрического титрования кальция и магния с помощью Са " — Mg -селективного электрода. Как и следовало ожидать, были получены искаженные кривые титрования в присутствии мешающих ионов, однако ошибки титрования не были рассчитаны. [c.40]

    Карр [130, 131] также исследовал диапазон систематических ошибок осадительного и комплексометрического титрования с применением ион-селективных электродов, а Анфельт и Ягнер [132] рассчитали на ЭВМ концентрацию веществ, находящихся в растворенном виде в титруемом объеме, исходя из известных общих концентраций и констант комплексообразования. Они также рассчитали кривую титрования через коэффициент селективности, используя уравнение [c.43]

    На рис. 14.1 представлены кривые комплексометрического титрования четырехзарядных ионов металлов растворами одно-, двух- и четырехдентатных лигандов, каждый из которых образует комплексные соединения с общей константой устойчивости р = [c.272]

    Определение свинца в бензине проводят методами комплексометрического титрования (ГОСТ 13210-72) или спекгрофотометрически по ГОСТ 28828. В первом случае образец бензина обрабатывают соляной кислотой. При этом ТЭС разлагается до хлорида свинца, который экстрагируется водой. Затем экстракт упаривают, сухой остаток растворяют в воде, добавляют немного соляной кислоты и титруют натриевой солью этилендиаминотетрауксусной кислоты в присутствии уротропина и индикатора. При определении свинца по второму методу его выделяют из бензина в виде комплекса с 4-(2-пиридилазо)резорцином или с сульфарсазеном. Свинец в комплексе определяют на спектрофотометре, измеряя оптическую плотность при длине волны 500 или 520 нм. Возможно фотоко-лориметрическое определение в области длин волн 500-540 нм. Количественные расчеты проводят, пользуясь заранее приготовленными градуировочными кривыми. Недостатками метода являются трудоемкость и необходимость приготовления свежих реактивов. Более удобным и быстрым является метод атомноабсорбционной фотометрии. [c.25]

    Как будет изложено в гл. 13, амперометрическое титрование проводят, погружая два электрода в титруемый раствор обычно оди электрод является микроэлектродом (часто ртутный капающий электрод), а другой — подходящий (неполяризуемый) электрод оравиения. На микроэлектрод налагают какой-то предварительно выбранный потенциал отно сительно электрода сравиепия и строят график зависимости силы тока (обычно в микроамперах), который протекает в цепи вследствие восстановления или окисления реагирующих компонентов-или продукта их реакции, от о бъема прибавленного титранта. По изменению силы тока судят об изменении концентрации веществ в растворе. Как показано на рис. 13-9, кривая амперометрического титрования состоит из двух прямых линий, точку эквивалентности находят как точку пересечения этих прямых. В табл. 13-3 приведены некоторые типичные примеры комплексометрических титрований, которые могут быть осуществлены амперометрическим методом. [c.204]

    Как уже отмечалось, высокие дипольные моменты (4 6D), возникающие при присоединении эфиров и аминов к соединениям типа АШд, RjAlH, К2А1Гал и т. д., могут быть применены для определения так называемой активности при помощи комплексометрического ДК-титрования. Постепенное добавление донора к раствору алюминийорганического соединения проявляется характерным пиком при молярном соотношении 1 1 и характерным крутым подъемом кривой диэлектрической константы. [c.144]

    Процесс титрования железа(И) цернем(1У) представлен кривой 1 па рис. 15-1. Ее форма сходна с формой кривых в методе кислотно-основного, осадительного и комплексометрического титрования. На приближение точки эквивалентности указывает резкое из.менение функции по оси ординат. Титрование 0,01 М раство- [c.358]

    Комплексометрическое титрование. Титрант и определяемый ион образуют комплексное соединение. Результаты определения зависят от предела обнаружения соответствующего иона данным ионоселективным электродом и величины константы устойчивости комплекса и присутствия примесей посторонних ионов, способных взаимодействовать с комплексообразующим реагентом, конкурируя с определяемым ионом, или электродно-активных примесей, влияющих на показания электрода. К методам комплексометрического титрования относится определение кальция титрованием раствором ЭДТА, а также некоторые варианты кислотно-ос-новного титрования. В качестве примера на рис. Т-5 приведена кривая комплексометрического титрования ионов меди. [c.109]

    Область аналитических применений, для которых данный прибор может быть полезен, включает кислотно-основное, окислительно-вос-становительное, осадительное и комплексометрическое титрование. На рис. 5.2 показана типичная кривая осадительного титрования хлорида нитратом серебра в диапазоне концентраций 0-100 мг/л. Аналогичный прибор, в котором для подачи проб в термометрическую ячейку используются поршневые насосы, описывает Джиллот [3]. [c.206]

    Объемный (титрование 0,1 н. или 0,01 н. раствором НС1 со смешанным индикатором) Комплексометрический (с трилоном Б) или олеатный (с калибровочной кривой) [c.212]

    Комплексометрический (с трилоном Б) или олеатный (с калибровочной кривой) Объемный (титрование 0,01 и. НС1 со смешанным индикатором, с поправкой на аммиак) Иодометрический (двойным или тройным отбором) или колориметрический с индигокарми-ном [c.220]


Смотреть страницы где упоминается термин Кривые титрования комплексометрического: [c.336]   
Основы аналитической химии Часть 2 (1979) -- [ c.306 , c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексометрическое титрование

Кривые титрования



© 2025 chem21.info Реклама на сайте