Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наполнители серебро

    Явление коллоидной защиты нашло широкое практическое применение. Например, оно используется в фармацевтической промышленности при получении колларгола (золя серебра), при стабилизации натурального и синтетических латексов, для создания однородных и устойчивых смесей латекса с наполнителями, пигментами и т. д. [c.116]

    Для проведения процесса в псевдоожиженном слое катализатора применяется чистый серебряный порошок или смеси его с порошкообразным карборундом, а-окисью алюминия силикатами или кусочками огнеупорного кирпича . Соли серебра или порошкообразное серебро рекомендуется формовать в таблетки или шарики определенного диаметра 121-123 д я создания необходимой пористости серебряный порошок формуют вместе с наполнителем, который затем удаляют термической обработкой или вымыванием. [c.210]


    Для электропроводных стеклоэмалей (проводниковых и резистивных) применяют наполнители на основе благородных металлов, выдерживающих высокотемпературную обработку при вжигании золото, платину, серебро, палладий в различных сочетаниях друг с другом. При наличии малых зазоров и электрического поля серебро можно применять только в сочетании с палладием, присутствие которого позволяет снизить электродиффузионную подвижность серебра. [c.61]

    Различают два вида композиций электропроводного наполнителя инертные (на основе золота, платины) и химически активные >(на основе серебра с палладием). Химически активные композиции доступнее инертных, но требуют дополнительных затрат на компенсацию брака, вызванного неустойчивостью результатов в условиях производства. [c.61]

    При вжигании резистивной стеклоэмали с наполнителем Ag—Рс1 протекают термохимические реакции. В зависимости от температуры термообработки различают два этапа реакций. На первом этапе (320—520° С) происходит окисление металлического палладия с образованием Р(10 и последующее физическое растворение его в поверхностной зоне на частицах стекла. Окись серебра, вводимая в композицию, при 160—200° С восстанавливается до металлического А . На первом этапе частицы фритты размягчаются, спекаются друг с другом и начинают защищать наполнитель от контакта с атмосферой. [c.61]

    Второй прием заключается во введении в полимерную матрицу электропроводящих наполнителей. Ими могут служить как металлы, так и их соединения (серебро, никель, медь). Требования к таким наполнителям оптимальная дисперсность и отсутствие оксидной пленки на поверхности частиц. [c.28]

    Для увеличения удельной поверхности катализатора и уменьшения расхода ценных материалов (платины, серебра) используют и другой способ приготовления катализатора, когда готовый катализатор в виде порошка смешивают с инертным наполнителем и эту массу формуют в гранулы. В некоторые системы вводят структурообразующие добавки, препятствующие рекристаллизации частиц или их агрегированию. При получении плавленых катализаторов такие добавки потом удаляются из твердого тела и способствуют образованию пористой структуры металла. [c.31]

    Существенное уменьшение сопротивления р. , наблюдается также при снижении контактного сопротивления между частицами наполнителя, напр, при покрытии порошка никеля тонким слоем серебра. Исследование эффекта Холла в эпоксидной смоле, наполненной смесью каолина и графита, показало наличие в такой системе носле ее термообработки проводимостей р- и га-типов. [c.479]


    На рис. 6-92 показан дисковый затвор для сверхвысоковакуумных устройств, в котором для уплотнения могут применяться расплавляемые металлы (золото, серебро, олово, индий, медь), при.меняющиеся в сочетании с порошковым наполнителем из тугоплавкого металла. [c.349]

    Наличие защитной оболочки позволяет повысить рабочее давление стеклянных трубопроводов до 1,0. .. 1,6 МПа Освоена технология изготовления труб из технического стекла с защитной оболочкой на основе стекловолокнистых наполнителей и модифицированных эпоксидных смол, термопластов. Разработана технология изготовления стеклянных труб с металлической защитной оболочкой. Она состоит из трехслойного покрытия химически осажденного серебра, меди или никеля и основного слоя — железа толщиной до 1 мм, наносимого электрохимическим методом. Покрытие плотно прилегает к трубе. При растрескивании или разрушении стекла осколки остаются на оболочке. [c.72]

    С учетом шкалы, приведенной на рис. 59, среди полимерных материалов можно обнаружить не только традиционные изоляторы (ПЭ, ПС, ПА, ФП, АП, ЭП), но и проводящие материалы, у которых, правда, проводимость достигается использованием вы-сокопроводящих наполнителей (серебро, раскисленная медь, никель). [c.156]

    Не существует стандартной колонки для анализа СНГ. Выбор наполнителя зависит от того, какие углеводороды (насыщенные или ненасыщенные) присутствуют в пробе и требуется ли их пеп-тизацпя. Методика А5ТМ 02163 рекомендует следующие типы наполнителей силиконовую нефть для проб, свободных от олефинов бензилцианид нитрат серебра (преимущественно для бутенов) гексаметил фосфорамид (не полностью выделяет бутены) бензилцианид нитрат серебра и диметилсульфолан (в двухколоночных системах для полного анализа). [c.84]

    ЦИНКА СОЕДИНЕНИЯ. Оксид цинка ZnO — пушистый белый порошок, применяют для производства цинковых белил и как наполнитель резины, пластмасс, а также в медицине, косметике, при кожных заболеваниях. Хлорид цинка гигроскопичен, хорошо растворяется в воде, используется для пропитки древесины (напр., шпал), травления металлов, в качестве обезвоживающего вещества. Сульфат цинка Iv O 7Н2О (цинковый купорос) — хорошо растворяется в воде, используется в производо-ве вискозы, в качестве микроудобрения (для травы), для производства красок, в медицине. Сульфид цинка ZnS (в природе минерал сфалерит) используется как люминофор, легированный медью или серебром в смеси с dS для изготовления телевизионных трубок и экранов, в производстве высококачественных, нетоксичных красок (литопон). [c.285]

    Сжигание проводят в кварцевых трубках применяя специальные наполнители, добиваются того, чтобы получались необходимые продукты, и способствуют удалению побочных продуктов реакции (SOg, например, окислами свинца, галогены — металлизованной серебром шерстью), при зтом одновременно происходит восстановление окиси азота в азот. Обычно водород и кислород определяют одновременно, азот — отдельно. Водород, абсорбируют в виде воды на a la или другом осушителе, углерод в виде Oj на натронной извести или натронном асбесте. Азот определяют газоволюмометрическим методом. В настоящее время в связи с автоматизацией методов анализа все три элемента испаряют одновременно и затем определяют различными методами, а также методом газовой хроматографии [63, 64]. Большой вклад в развитие элементного анализа внес Либих, который улучшил методы макроанализа, предложенные Преглем, применительно к полумикро- и микроопределениям веществ (навески соответственно 20— 30 мг и <2 мг) [71]. [c.383]

    Для защиты полимеров с органическими наполнителями возможно применение производных бензола, пример пентахлорфено-лята натрия. Наибольщий эффект достигается при введении биоцида в нестойкий компонент, а не в связующее. Высокой биостойкостью обладают поливинилспиртовое волокно с ионами серебра и фурагином и фторолоновая ткань ФЛТ-42. [c.83]

    М. в. и металлизир, волокна и нити используют для изготовления текстильных изделий и их отделки (напр., парчовые ткани, трикотаж с люрексом, нетканые материалы, войлок, антистатич. тканн и ковры, галуны, шнуры, воинские знаки различия, шитье золотом и серебром, елочные украшения). Высокопрочные и термостойкие М. в. (молибденовые, вольфрамовые, стальные)-армирующие наполнители для легких металлов и сплавов, а также керамич, материалов, что существенно повышает их мех. св-ва и теплостойкость. Металлич. нити, а также ткани и сетки из них-наполнителн полимерных композиц материалов (напр., фрикционных-для тормозных колодок транспортных ср-в) сетки применяют также для разделения дисперсных систем (сита), в произ-ве бумаги и картона, сетки и войлоки-для фильтрации жидкостей и газов (в т.ч. агрессивных и горячих) войлоки-прокладочные и уплотнит, материалы. Мн. виды М. в. (нити, сетки, жгуты и др) используют в электро- и радиотехнике. [c.41]

    В качестве полупроводников могут быть использованы диэлектрики, наполненные токопроводящими наполнителями ме-d 1ЛИЧССКИМН порошками, графитом, техническим углеродом В качестве металлических наполнителей используют серебро, никель и другие металлы, не подвергающиеся окислению и не вызывающие химического разрушения полимеров Механизм электропроводимости наполненных систем (полупроводников и диэлектриков) более близок к туннельному, хотя не исключается возможность эмиссии электронов от частицы к частице. Туннельное сопротивление определяется толщиной прослойки полимера, которая зависит от содержания и размера частиц, их распределения и других факторов С уменьшением толщины прослойки сопротивление снижается. Его значение зависит также от диэлектрической проницаемости полимера, разделяющего частицы прн уменьшении проницаемости оно снижается В об- ia TH слабых полей сопротивление практически не завнсит от напряження, а при высоких значениях напряжения сопротипле-ние уменьшается [c.386]


    Электропроводные полимерные пленки характеризуются удельным объемным электрическим сопротивлением не более 10 Ом см. Существует два вида электропроводных пленок гомопленки (из одного полимера), обладающие полупроводниковыми свойствами, и гетеропленки (из полимеров с различными токопроводящими наполнителями), содержащие сажу, графит, порошки никеля, меди, серебра и других металлов. [c.77]

    В качестве наполнителя используют порошок металла, подвер гаемого пайке. Например, для пайки меди применяют припой ПГМ 65 состава 650а — ост. Си, для пайки никеля — припой ПГН 54 состава 54 Оа — ост. Ni. Указанные припои применяют также для присоединения к золоту и серебру [10]. [c.28]

    Чтобы избежать бесполезного проскока пузырьков газа в электролит через слишком крупные поры, мы по примеру Бэкона делали электроды двухслойными. Тонкопористый запорный слой состоит при этом либо из одного карбонильного никеля, либо в последний вводится тонкозернистый порошок сплава Ренея, из которого при активации образуется серебро Ренея грубопористый рабочий слой также изготавливается из порошков карбонильного никеля и сплава Ренея. Пористость этого слоя регулировалась размером частиц сплава и добавкой порошка хлористого калия в качестве наполнителя. Этот наполнитель после горячего прессования легко растворялся. [c.377]

    В качестве реагентов можно использовать только соединения, быстро взаимодействующие с определяемым компонентом и селективно образующие с ним ярко окрашенные продукты реакции, отличающиеся по цвету от индикаторного порошка. Избирательность часто повышают, используя вспомогательные окислительные, осушительные или фильтрующие трубки а также трубки с наполнителями для улавливания мешающих определению компонентов. В качестве примеров наполнителей можно привести шамот, обработанный сульфатом меди (взаимодействует с аммиаком и сероводородом, но пропускает фосфин) шамот с нитратом серебра и сульфатом ртуги(1) (можно определять бензин в присутствии не-предельшлх углеводородов алифатического ряда и ароматических углеводородов) стеклянный порошок с барбитуровой кислотой (взаимодействует с аммиаком, но пропускает ароматические амины) стеклянный порошок, обработанный ацетатом аммония (поглощает формальдегид, пропускает акролеин) (табл. 11.18-11.20). [c.243]

    Основным методом защиты металлов (сплавов) от такого вида коррозии является способ наиболее эффективных гальванопокрытий (например, серебро и золото для меди и ее сплавов), а также удаление из пластмассовых изделий остатков газов связующих и наполнителей путем их тер-мостатирования при повышенных температурах. [c.10]

    Электропроводящие наполнители могут применяться в качестве одного из компонентов электропроводящих покрытий. Другими компонентами являются связующее (например, поливинилхлорид, полиэтилен, полиизобутилен, поливинилацетат и др.) и растворитель или диспергирующий агент. При различных способах нанесения покрытия (окраска, разбрызгивание, окунание, пульверизация и др.) электропроводящий наполнитель должен распределяться по поверхности так, чтобы между его отдельными частицами сохранялся устойчивый контакт. Лаки на основе чистого серебра имеют самую высокую электропроводность. Электропроводность лаков на основе сажи несколько ниже, но может быть повышена подбором соответствующего связующего. В этом отношении хорошие результаты показали полимерные связующие — полиэтилен и полиизобутилен. Высокую проводимость имеют покрытия, содержащие мелкодисперсную сажу. Например, электропроводящая краска, состоящая из 100 вес, ч. поливинилхлорида и 20 вес. ч. диоктилфталата, растворенных в 400 вес, ч. метилэтилкетона, 25 вес, ч, газовой сажи и 10 вес, ч, метилового спирта, образует покрытие с р = 20 Ом. Электропроводящее покрытие, состоящее из 60—70% фурфуролацетонового полимера, 15—20% ацетиленовой сажи, 4—5% ацетона, 5—7% фурфурола и 10—20% отвердителя (от массы фурфурола), после нанесения на поверхность полимера и отверждения образует слой с pv от 10 до 100 Ом-см. Для покрытия пластмасс нашли применение пленки на основе окиси олова. В качестве покрытий могут быть использованы также некоторые пленкообразующие полимеры с хорошими антистатическими свойствами (например, полидиметилакриламид, поливинилпентаметилфосфорамид, полиакриламид и др.). [c.442]

    Фотографический метод (подробнее см. подраздел 6.2.5.2) используется для контроля дозы рентгеновского, у-, Р- и нейтронного излучений. Химически обработанная пленка имеет прозрачные и почерневшие участки под воздействием излучения. Между степенью почернения 8 и экспозиционной дозой X имеется связь (сенситометрическая характеристика эмульсии 5 =XlgД )). Поскольку бромистое серебро и наполнитель — не воздухоэквивалентные материалы, то степень почернения при одошаковых экспозиционных дозах X зависит от энергии излучения. [c.119]

    Подготовка наполнителя колонки. Перемешивают 25 г силикагеля с раствором нитрата серебра tfpn комнатной температуре в течение 5 мин. Затем суспензию переносят в кристаллизатор и равномерно толщиной не более 5 мм распределяют по поверхности. Кристаллизатор помещают в сушильный шка и выдерживают 4 ч, поднимая температуру до 120 °С в течение 60 мин. После охлаждения до комнатной температуры полученный наполнитель заливают дихлорэтаном и в виде суспензии заполняют им колонку. Колонку защищают от света черной бумагой. [c.144]

    Нек-рые металлич. наполнители придают полимерам специфич. свойства, наир, порошки железа и его сплавов — ферромагнитные свойства, чешу11ки алюминия, никеля, серебра и др.— низкую газо- и паропроницае-мость, порошки алюминия и медных сплавов — декоративность. М. п. на основе тонкодисперсных порошков платины, палладия, родия, иридия и железа обладают способностью катализировать реакции гидрирования и часто превосходят по каталитич. активности металлич. порошки. Материалы, наполненные свинцом, кадмием и вольфрамом, пригодны в качестве защиты от излучений высокой энергии. [c.99]

    В качестве электропроводящих наполнителей используют специальные марки технического углерода, графит, углеродные волокна, порошки никеля, меди, серебра и других металлов. Наиболее распространенными электропроводящими на-полнителлми является ацетиленовый технический углерод и специальные печные марки — П267Э и П355Э. Резкое снижение удельного электрического сопротивления резин наблюдается уже при введений 20—30 мае. ч. технического углерода, на ГОО мае. ч. каучука вследствие образования наполнителем устойчивых токопроводящих структур, пронизывающих каучуковую матрицу. Дальнейшее увеличение концентрации наполнителя приводит к образованию пространственной сетчатой структуры, но электропроводность резин увеличивается медленнее за Счет совершенствования последней. Оптимальное содержание технического углерода составляет 30—60 мае. ч. [c.18]

    В последнее время появились новые материалы на основе фторопласта-4 —наполненные, более прочные и износоустойчивые [2, 23, 24]. В качестве наполнителей используются графит и дисульфид молибдена, которые повышают антифрикционные свойства фторопласта-4, стеклонаполиители, улучшающие механические свойства, в частности износостойкость, и металлы (медь, бронза серебро и др.), повышающие теплопроводность и проч ность. Такие материалы марок ФКН-7, ФК.Н-14 Производятся в опытно-промышленном масштабе [2], Их химическая стойкость, особенно ФКН-14, несколько ниже, чем фторопласта-4, но они рекомендуются в качестве уплотнительных деталей компрессоров и насосов, например, для перекачки 15%-ной серной кислоты при 70°С. [c.160]

    В США производят дешевый электропроводящий силоксановый эластомер для изготовления деталей электронного и радиотехнического оборудования. Он представляет собой композиционный материал, который состоит из частиц алюминиевого-наполнителя, равномерно диспергированного в силоксановом-каучуке. Частицы алюминия, покрытые слоем серебра, обеспечивают высокую теплостойкость (200 °С) и сопротивление воздействию коррозии в жестких условиях. По эффективности защитного действия новый материал (с меньшим содержанием-серебра по сравнению с другими электропроводящими полиси-локсанами) значительно превосходит эластомеры, содержащие стеклянный наполнитель с серебряным покрытием. [c.125]

    Электропроводность поливинилхлорида резко возрастает (в 9—10 раз) при облучении у-излучением Со [344]. Электропроводность может быть повышена также за счет введения металлических наполнителей. Кадонага [345] указывает, что при введении в поливинилхлорид 12,6 объемн. % порошкообразного серебра получается материал с удельным объемным сопротивлением 2,5-10" ом-см, уд. в. 2,37 и пределом прочности на растяжение 100 кПсм . [c.377]

    Температура в реакторе в течение всего процесса поддерживается при помощи внешнего охлаждения около 30—40°. При нейтрализации продукта реакции щелочью выпадает смола в виде аморфного порошка, который постепенно принимает бледнорозовую окраску. Полученный аморфный порошок вместе с жидкой фазой пepeнo иt я иа вакуум-нутч-фильтр, отделяется от жидкости и промывается водой до удаления хлористого натрия. Для контроля применяется проба промывных вод на хлор-ион с азотнокислым серебром. Промытый аморфный порошок сушится в вакуум-сушилке при 70—80° в течение 8—10 час., пока влажность порошка будет не выше 4%. После этого порошок измельчается на шаровой мельнице, просеивается через сито в 900 отверстий на 1 и прессуется. Прессовочный порошок с наполнителем приготовляется по описанному выше способу, но напожитель (древесная мука, маршалит и т. д.) смешивается с продуктом реакции перед нейтрализацией последнего с щелочью. При нейтрализации продукт конденсации высаживается иа наполнитель. Полученный прессовочный материал сушится и. подвергается горячей прессовке. Прессование порошков из чистых смол и композиций с наполнителями производят при 165—185°, уд. давлении 250—400 кг/сл выдержка изделия под давлением составляет 1 мин. на 1 мм толщины изделия. [c.250]


Смотреть страницы где упоминается термин Наполнители серебро: [c.59]    [c.101]    [c.256]    [c.304]    [c.424]    [c.242]    [c.478]    [c.380]    [c.150]    [c.256]    [c.478]    [c.385]    [c.189]    [c.256]    [c.477]   
Мономерные клеи (1988) -- [ c.110 ]

Мономерные клеи (1988) -- [ c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители



© 2025 chem21.info Реклама на сайте