Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк сульфат

    Запишите формулы нижеперечисленных веществ, пользуясь сведениями о ионных зарядах из табл. 3.1 хлорид калия, оксид меди(1), бромид мышьяка, сульфат олова(П), нитрат железа(1П), силикат алюминия, фосфат аммония, гидроксид магния, арсенат меди(П), нитрид кальция. [c.53]


    Определению бора с куркумином мешают такие элементы как железо, молибден, вольфрам и ряд других, реагирующих в тех же условиях с куркумином с образованием подобного цвета комплексов. Мешают этой реакции также окислители, подвергающие куркумин окислению ГФ X допускает в препарате содержание примесей кальция, железа, тяжелых металлов, мышьяка, сульфатов в количестве, не превышающем эталоны. Чистая борная кислота должна полностью растворяться в горячей воде и спирте. [c.109]

    Из арсенатов Fe, Си, Zn и d при одном и том же значении pH наименее растворим арсенат железа. Растворимость гидроокисей этих металлов больше растворимостей их арсенатов этим можно воспользоваться для выделения мышьяка из растворов при помощи соответствующих гидроокисей. Из растворов, содержащих, наряду с мышьяком, сульфаты цинка, кадмия и другие, можно селективно выделить мышьяк, осаждая его при низких pH в форме арсената железа Ниже приведены произведения растворимости некоторых арсенатов при 20° [c.652]

    Влияние на человека и теплокровных животных. Летальная доза для человека 3—17 мг/кг массы [1 0-53]. Таллий — кумулятивный яд, в 4 раза токсичнее оксида мышьяка. Сульфат таллия токсичен для людей в концентрации 0,05 мг/л [0-34]. [c.121]

    Мышьяк Сульфаты Фосфор Хлор [c.539]

    Из сульфидов металлов используют, в основном, серный и медный колчеданы (халькопирит). Помимо основного компонента колчеданы содержат примеси соединений меди, цинка, свинца, мышьяка, никеля, кобальта, селена, висмута, теллура, кадмия, карбонаты и сульфаты кальция и магния, небольшие количества золота и серебра и т. п. Содержание серы в серном колчедане, пригодном для непосредственного использования, колеблется от 32 до 52%, в чистом ГеЗа оно равно 53,5% (табл. 13). [c.35]

    Взвешенные частицы анализируют на содержание ионов фтора, нитратов, сульфатов и аммиака, а также мышьяка, бериллия, висмута, кадмия, хрома, кобальта, меди, железа, свинца, марганца, молибдена, никеля, селена, олова, ванадия и цинка. Улавливаются и анализируются также асбест, бор, силикаты. [c.100]

    Кроме того, при большом количестве анодного шлама и высокой плотности тока на катодах возникает массовое образование шишек, что понижает качество катодов. Высокая плотность тока ограничивается также содержанием сульфата никеля, мышьяка и сурьмы в растворе. При рафинировании анодов, содержащих выше 0,2% Ag и 0,01 % Аи, рекомендуется снижать плотность тока во избежание больших, потерь вследствие перехода в катод драгоценных металлов. [c.199]

    Свинец присутствует в виде сульфата. Сурьма, мышьяк и висмут находятся в виде окислов или основных солей, железо и кремнезем — в виде включений шлака. [c.217]

    Мышьяк или сурьма —вызвать рвоту. Дать слабительное сульфат магния после чего в 300 мл воды растворить 100 г сульфита железа (П1), добавить 20 г окиси магния, растертой в 300 мл воды, смесь сильно взболтать и давать пострадавшему по 1 чайной ложке через 10—15 мин до прекращения рвоты. [c.123]


    Практическое значение имеют чистые полисульфиды щелочных металлов и аммония, применяемые в аналитической химии для растворения сульфидов мышьяка, сурьмы и олова. Неочищенная смесь полисульфидов щелочных металлов, называемая в технике серной печенью и наряду с полисульфидами содержащая тиосульфаты — соли тиосерной кислоты, сульфаты — соли серной кислоты и др., применяется при обработке кож. [c.568]

    К третьей группе примесей относятся мышьяк, сурьма и висмут. Стандартные потенциалы мышьяка, сурьмы и висмута равны соответственно +0,25, +0,21 и +0,22 в, т. е. более отрицательны, чем потенциал меди. Поэтому на аноде происходит полное растворение этих примесей с образованием соответствующих сульфатов. Однако в электролите эти сульфаты неустойчивы и в значительной степени подвергаются гидролизу. Сурьма и висмут при гидролизе дают гидроокиси  [c.14]

    После электролиза маточный раствор содержит в основном лишь сульфат никеля, который и выделяется из него выпаркой и кристаллизацией. Маточный раствор, из которого выделен сульфат никеля, представляет собой концентрированную серную кислоту ( 600 г/л), загрязненную примесями (железо, цинк, сурьма, остатки мышьяка, никеля и др.). Этот раствор выпаривают. Поскольку сульфаты металлов нерастворимы в концентрированной серной кислоте, по мере выпаривания (которое ведут до содержания кислоты 1200 г/л) примеси выделяются в осадок. Полученную серную кислоту можно использовать для добавления в электролит. [c.19]

    Очистка через соединения. Недостаточная эффективность кристаллофизической очистки индия от ряда примесей заставляет искать объекты для такой очистки среди его соединений. Хлорид индия для этой цели не годится, так как он возгоняется ниже температуры плавления. Обычные соли индия — сульфат, нитрат и т. д. — разлагаются, не плавясь. Зонной плавке или направленной кристаллизации можно подвергать иодид индия. Коэффициенты распределения меди, олова, железа, теллура и мышьяка в иодиде индия меньше единицы [141, 142]. Но обратное получение металла из иодида индия вызывает затруднения. [c.322]

    Так как кислоты представляют соли гидроксония, то растворение металлов в кислотах представляет частный случай этого правила рядов вытесняется водород. Однако кислоты переводят осадок в раствор целиком (вследствие необратимости реакции), а соли металлов переводят в раствор или катион, или анион. Это позволяет проводить селективное растворение. Например, сульфат свинца растворяется в растворе карбоната натрия, вытесняя сульфат-ион в раствор. При взаимодействии осадка сульфата свинца с цинком выделяется свободный свинец и сульфат-ион переходит в раствор. Карбонат свинца легко растворим в кислотах. При этом РЬ " и сульфат-ион переходят в раствор. Если же растворять осадок сульфида свинца (П) действием раствора нитрата серебра, то сульфид-ион осаждается ионом серебра, а катион свинца переходит в раствор. Применяя реакции комплексообразования, можно растворять соли, не растворимые в кислотах например, сульфид мышьяка (1П) растворяется в растворе сульфида натрия, образуя тиоарсенит натрия. Осадок хлорида серебра при взаимодействии с раствором сульфида натрия превращается в менее растворимый сульфид серебра. [c.132]

    Экстракционный метод отделения мышьяка от сурьмы. При токсикологических исследованиях и других случаях бывает нужно перед броматометрическим определением мышьяка отделить его предварительно от сурьмы. Если мышьяк и сурьма находятся в высших степенях окисления (5+), то их восстанавливают до степени окисления 3- - сульфатом гидразина и затем экстрагируют бензолом. Обычно мышьяк может присутствовать в количестве от 0,5 мг до 6 мг в 10 мг смеси мышьяка и сурьмы (в виде окислов). [c.417]

    Так, в аналитической химии довольно точно производят определение малых количеств ртути, мышьяка, фосфора, сурьмы, хлора, сульфатов и других веществ. Затрата времени на эти определения значительно меньше, чем при весовом анализе. [c.349]

    Отличительной особенностью сьфой синтетической уксусной кислоты по дравнению с сырой лесохимической является высокое содержание уксусной кислоты, весьма низкое содержание смолистых веществ и почти полное отсутствие свинца, мышьяка, сульфатов железа и алюминия и хлоридов различных металлов. [c.193]

    Восстановление компонентов. Восстановительные реакции составляют основу восстановительной плавки дки-сленного рудного сырья и полупродуктов цветных металлов. (Восстановление из руд фосфора, марганца, серы из отходящих газов после сорбции, сульфита натрия из сульфата натрия, баритового концептрата, получение трехокиси мышьяка и т. д.). [c.7]

    Ка8СК - 50 - 60 г/л, КагСОз - 18 г/л, АзгОз - 15 г/л) и подкисляется серной кислотой. Выделяющиеся сульфиды мышьяка используются для приготовления рабочего раствора их растворением в КаОН или КззСОз. Раствор балластных солей упаривается досуха и прокаливается в присутствии воздуха. Получаемый сульфат натрия используется в стекольной промышленности. В результате очистки коксового газа по мышьяково-содовому методу сероводород улавливается на 90 - 95%, цианистый водород на 90%. [c.68]


    В этих схемах полной стрелкой показано положение координационной связи. Фигурирующие здесь донорные элементы (сера, -мышьяк и азот), а также селен, фосфор и другие не образуют соединений, обладающих свойства.ми каталитических ядов, если они находятся в состоянии наивысшей валентности, поскольку в этом случае молекулы не обладают парами свободных электронов. То же справедливо для ионов этих элементов. Например, сульфит-ион является ядом, в то время как сульфат-ион им не является [c.50]

    Как уже упоминалось выше, электролиз приходится проводить в растворе, содержащем взвеси частиц драгоценных металлов, кристалликов РЬ504, основных солей мышьяка, сурьмы и т. д. Кроме того, в растворах нередко содержится заметное количество сульфата иикеля. Это способствует появлению на катоде шишек, дендритов, что в свою очередь вызывает короткие за мыкания между электродами. Введение добавок поверхностно активных веществ необходимо для сглаживания поверхности катодов. Стремление к увеличению производительности цехов электролиза неизбежно связано с увеличением плотности тока. В настоящее время работают с плотностью тока 180—200 а/м . Имеются случаи, когда ее увеличивают до 260 а/м . [c.160]

    Вычислить фактор пересчета, если при определении мышьяка сначала осадили AS2S3, затем окислили серу до S04 , осадили сульфат хлоридом бария и взвесили BaSOi  [c.72]

    НЕФЕЛОМЕТРИЯ (греч, nepiiele-облако)—метод количественного определения дисперсности и концентрации коллоидных растворов по интенсивности рассеянного ими света (соответственно приборы — нефелометры). Н. позволяет определять моле гулярную массу полимеров. В аналитической химии Н. определяют незначительные количества ртути, мышьяка, фос([)ора, сурьмы, бария, сульфатов и др. [c.173]

    СТЕКЛО (обыкновенное, неорганическое, силикатное) — прозрачный аморфный сплав смеси различных силикатов или силикатов с диоксидом кремния. Сырье для производства стекла должно содержать основные стеклообразующие оксиды 510а, В Оз, Р2О5 и дополнительно оксиды щелочных, щелочноземельных и других металлов. Необходимые для производства С. материалы — кварцевый песок, борная кислота, известняк, мел, сода, сульфат натрия, поташ, магнезит, каолин, оксиды свинца, сульфат или карбонат бария, полевые шпаты, битое стекло, доменные шлаки и др. Кроме того, при варке стекла вводят окислители — натриевую селитру, хлорид аммония осветлители — для удаления газов — хлорид натрия, триоксид мышьяка обесцвечивающие вещества — селен, соединения кобальта и марганца, дополняющие цвет присутствующих оксидов до белого для получения малопрозрачного матового, молочного, опалового стекла или эмалей — криолит, фторид кальция, фосфаты, соединения олова красители — соединения хрома, кадмия, селена, никеля, кобальта, золота и др. Общий состав обыкновенного С. можно выразить условно формулой N3,0-СаО X X65102. Свойства С. зависят от химического состава, условий варки и дальнейшей обработки. [c.237]

    Тиосерная кислота HnSoOg и другие тиокислоты серы и их соли. Подобно мышьяку, сурьме и олову, сера образует ряд тиокислот и их солей, представляющих собой производные серной кислоты или сульфатов, в которых кислород замещен серой. Примером подобного соединения является тиосерная кислота, вернее монотиосерная кислота HjSoOg, представляющая [c.582]

    Для определения мышьяка в галлии берут три навески металла по 0,5 г, помещают каждую в кварцевый стакан емкостью 100 мл, добавляют 5 г сульфата аммония, приливают 10 мл серной кислоты (пл. 1,84), накрывают стакан часовым стеклом и проводят растворение при умеренном нагревании на плитке. По окончании растворения металла содержимое стакана охлаждают и образовавшиеся сульфаты растворяют в 25 мл воды при нагревании. Охлажденный раствор переводят в делительную воронку емкостью 100 мл, смывая стенки стакана 5 мл 9 н. серной кислоты. В воронку приливают 5 мл диэтилдитиокарбамината цинка и экстрагируют соединения мышьяка, встряхивая содержимое воронки в течение 1 мин. После расслаивания слой хлороформа сливают в другую делительную воронку емкостью 50 мл и проводят реэкстракцию мышьяка 5 мл азотной кислоты при встряхивании воронки в течение 0,5 мин. Эту операцию повторяют дважды. Объединенные азотнокислые растворы, содержащие мышьяк, помещают в делительную воронку, промывают 5 мл хлороформа, перевертывая воронку 5—6 раз.Отстоявщийся слой хлороформа тщательно отделяют (не захватывая водной фазы) и отбрасывают, а водный слой переводят в кварцевую чauJкy и упаривают досуха на плитке с умеренным нагревом, избегая прокаливания сухого остатка. По охлаждении в чащку приливают 3 мл воды, нейтрализуют раствором едкого натра по индикаторной бумаге до pH 6—7 и переводят в делительную воронку, приливают 1 мл смеси реагентов, 1 мл воды и оставляют стоять. В дальнейшем проводят все операции, указанные при приготовлении эталонных растворов. [c.149]

    В средние века известно было производство цинка, оно зародилось в Индии (XII в.). Соединения сурьмы и мышьяка описаны Василием Валентином в Триумфальной колеснице антимония (XV в.). Занадноевронейские алхимики особенно интересовались различными соединениями ртути (киноварь, сулема, оксид ртути, основной сульфат ртути), так как считали ртуть прародительницей всех металлов. [c.22]

    Раствор подвергают очистке от меди цементацией. Цементацию производят с помощью цинковых листов и цинковой пыли. Содержание меди в растворе в процессе очистки снижают до 0,1—0,2 г/л (более полной очистки производить нельзя, так как начинает цементироваться кадмий). Помимо очистки от меди, раствор в ряде случаев очищают от железа, мышьяка и сурьмы (гидролизом), от свинца (соосаждением с сульфатом стронция). Очищенный раствор направляют на цементацию кадмия. Цементацию производят с помощью цинковой пыли, подающейся в избытке. Цементный кадмий (кадмиевая губка) содержит приблизительно 50% Сс1, 20% 2п, 3% Си. Содержание кадмия в растворе снижается до 0,01 г/л. Этот раствор направляют на электролиз цинка. Полученную кадмиевую губку в металлическом виде или после предварительного окисления направляют на растворение. Для окисления губки ее складывают в штабеля. В процессе хранения в теплом и влажном помещении в течение 2—3 недель кадмий окисляется до Сс10. [c.72]

    Так же, как и при электролизе цинка, первой стадией очистки марганцевого электролита является гидролитическая очистка. Раствор после выщелачивания нейтрализуют аммиаком или избытком огарка до pH = 6,5. При этом сульфаты железа и алюминия, присутствующие в растворе, гидролизуются и дают осадок гидроокисей. Одновременно частично удаляются из раствора за счет адсорбции или образования основных солей ионы мышьяка и молибдена. Гидролиз соли марганца происходит при более высоком значении pH (>8,5), вследствие чего марганец в осадок не выпадает. После гидролиза электролит очищают от меди, никеля, кобальта и других тяжелых металлов. Для этого раствор обрабатывают газообразным сероводородом или сульфидом аммония. В осадок выделяются сульфиды этих металлов. Осадок отфильтровывают. В фильтрате содержится некоторое количество коллоидальной серы и сульфидов. Чтобы избавиться от этих примесей, в электролит добавляют железный купорос Ре304 до содержания в растворе 0,1 г л железа. При pH = 6,5—7,0 железо окисляется кислородом воздуха и выпадает в виде гидроокиси, адсорбируя коллоиды при этом удаляются также остатки мышьяка и молибдена. [c.103]

    Зооциды применяют против мышей, полевок, крыс, сусликов главным образом в виде отравленных приманок, которые могут содержать фосфид цинка ZosPi, сульфат таллия (I) TI2SO4, белый мышьяк АзаОз, специальный синтетический препарат крысид . [c.369]

    Осаждение в виде арсената. Описанный гидролитический метод непригоден для переработки материалов со значительным содержанием мышьяка, например пылей свинцовой плавки. В процессе нейтрализации индиевых растворов в присутствии мышьяка индий начинает осаждаться при значительно более низком pH. Как видно на рис. 67, особенно сильно сказывается присутствие мышьяка (V). В этом случае вместо основного сульфата или гидроокиси индия в осадок выделяется основной арсенат состава бГпаОз-ЗАзаОб.хНгО. Осаждается арсенат в более узком интервале pH (от 2 до 3,4) по сравнению с гидроокисью [99]. Арсенаты цинка, кадмия, свинца, железа (И) осаждаются при более высоком pH. Арсенат железа (Н1) осаждается совместно с индием и даже раньше его, поэтому перед осаждением индия в виде арсената рекомендуется восстановить Ре(П1) в Ре(Н). На рис. 68 показана схема одного из вариантов арсенатного способа извлечения индия из возгонов [102]. [c.305]

    На свинцовоплавильных заводах при агломерации свинцовых концентратов большая часть таллия (50—75%) возгоняется и переходит в пыль. Часть его остается в агломерате, по-видимому, из-за образования малолетучего сульфата. При плавке агломерата до 20% таллия остается невосстановленным и переходит в шлак остальной таллий примерно поровну распределяется между черновым свинцом и пылью. В процессе рафинирования чернового свинца большая часть таллия (70—80%) попадает в сухие медистые шликера. Щелочные плавы, получающиеся нри рафинировании свинца от мышьяка, сурьмы ит. п., захватывают 10—15% его. Наконец, 2—3% попадают в серебристую пену. Причина его перехода в эти продукты пока недостаточно выяснена. При переработке свинцовых шлаков путем вельцевания или фьюмингования основная масса таллия переходит в возгоны [92.] [c.341]

    Обычно пыли медеплавильных заюдов содержат гораздо меньше германия — порядка сотых и тысячных долей процента. Их рекомендуется подвергать предварительному термическому обогащению [70, 71]. Переработка вторичных возгонов предусматривает либо сульфатизацию в кипящем слое (с отгонкой мышьяка), либо выщелачивание 6%-ной H2SO4 [92]. Растворы в случае нужды могут быть очищены от мышьяка вышеописанным способом — окислением и нейтрализацией до pH 2—2,2. После этого производят двухстадийное гидролитическое осаждение германия, добавляя (в качестве носителя) сульфат железа. Более бедный второй осадок возвращают в переработку. После выделения германия цинковой пылью осаждается медно-кадмиево-таллие-вая губка [93]. Таллий может быть выделен, например, дихроматным методом (рис. 49). [c.185]

    Образование твердых растворов (смешанных кристаллов) позволяет осадить те ионы, которые в обычных условиях не осаждаются. Например, сульфаты стронция и свинца образуют смешанные кристаллы, которые можно выделить, добавляя к раствору с малым содержанием РЬ -+ раствор соли стронция и затем избыток сульфата. Весь РЬ выделится с осадком из раствора вместе со ЗгЗО . Свинец отделяют, превратив сульфаты в карбонаты и растворив последние в кислоте. Малое количество мышьяка (V) в виде ионов А504 осаждают вместе с фосфатом магния и аммония, добавляя в раствор ионы РО , МН , М - . Арсенат-ион образует изоморфный твердый раствор с фосфатом, замещая его частично в кристаллической решетке. [c.80]

    Каталитическая активность различных катализаторов может резко изменяться в присутствии некоторых веществ иной химической природы, которые сами не являются катализаторами, но резко увеличивают его каталитическую активность — такие вещества называют промоторами или активаторами. Так, каталитическая активность твердого оксида VjOj в отношении реакции окисления SO. в сотни раз увеличивается в присутствии сульфатов щелочных металлов. Вещества, которые, сами не являясь катализаторами, снижают их каталитическую активность, называют каталитическими ядами. Так, для процесса окисления SOj в сернокислотном производстве каталитическим ядом является ничтожная примесь соединений мышьяка. [c.179]


Смотреть страницы где упоминается термин Мышьяк сульфат: [c.26]    [c.426]    [c.13]    [c.111]    [c.423]    [c.469]    [c.211]    [c.401]    [c.333]    [c.307]   
Химический энциклопедический словарь (1983) -- [ c.357 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.357 ]




ПОИСК







© 2025 chem21.info Реклама на сайте