Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция вторичный дальний

    Связь величины электрокинетического потенциала с коагуляцией особенно четко видна в неправильных рядах. Установлено, что в устойчивой зоне, сменяющей зону коагуляции, знак заряда частиц изменяется по сравнению с первоначальным. Перезарядка и связанное с ней новое возрастание потенциала вызывает устойчивость коллоидов в этой зоне вторая зона коагуляции обусловлена вторичным понижением потенциала, вызванным дальнейшим увеличением концентрации электролита (см. рис. 51). [c.156]


    Следует заметить, что взаимодействие частиц на больших расстояниях, характеризуемое наличием на потенциальной кривой неглубокого отрицательного минимума, до сих пор не имеет специального названия. Ученые называют этО взаимодействие по разному дальней коагуляцией, коагуляцией во вторичном минимуме, дальней агрегацией, флокуляцией. В дальнейшем мы будем пользоваться всеми этими терминами за исключением флокуляции, поскольку термин флокуляция имеет чисто описательный характер (образование хлопьев, фло-кул) и не зависит от того, происходит ли она в результате истинной коагуляции или дальней агрегации. Термином коагуляция будем обозначать все виды агрегации частиц, начиная от коалесценции и непосредственного слипания частиц и кончая дальней агрегацией. Наконец, под истинной коагуляцией будем-понимать непосредственный физический контакт между частицами. [c.279]

    Рассмотрим гидродинамическую модель образования дисперсии ПВХ в пластификаторе в зависимости от размера частиц. Известно, что смешение порошков с жидкостью в смесителях осуществляется за счет потоков жидкости, профиль которых зависит от конструкции смесителя и формы мешалки [86]. Известно также, [67], что разделяющая частицы порошка гидродинамическая сила пропорциональна квадрату радиуса частиц, а молекулярные силы притяжения частиц пропорциональны первой степени их радиуса. Из этого следует, что существует такой диаметр частиц, для которого гидродинамическая сила, возникающая при диспергировании, больше силы притяжения. Однако с увеличением размера частиц появляется возможность их коагуляции на дальнем расстоянии, которая обусловлена наличием вторичного потенциального минимума на потенциальной кривой взаимодействия двух частиц и качественно отлична от коагуляции частиц в глубоком первичном потенциальном минимуме [67]. Вероятно поэтому легкая диспергируемость пастообразующих марок ПВХ обусловлена возможностью образования периодических коллоидных структур [36] во внешнем силовом гидродинамическом поле по следующему механизму  [c.262]

    Процессы мокрой обработки предопределяют адсорбционную способность и пористую структуру силикагелей. Они включают стадии синерезиса, кислотной обработки и обезвоживания. Большое влияние на структуру силикагелей оказывают условия созревания гидрогелей. Одним из методов регулирования структуры силикагелей является изменение глубины созревания их гидрогелей. Гидрогели, не претерпевшие синерезиса, образуют более тонкую структуру, чем вполне созревшие. С увеличением степени созревания гидрогелей, сформованных в нейтральной среде, наблюдается повышение адсорбционной снособности по бензолу. Насыпная плотность при этом уменьшается, но резко увеличиваются пористость и объем пор. В соответствии с этим сформованный гидрогель выдерживают в промывочном чане 1,5—2 ч в тех условиях, в которых он был сформован, т. е. в нейтральной формовочной воде. В течение этого времени происходит дальнейшее уплотнение мицелл (вторичная коагуляция) с образованием крупных агрегатов, сопровождающееся сокращением скелета гидрогеля и выделением из него интермицеллярной жидкости. От вторичной коагуляции зависят размеры образующихся агрегатов. [c.117]


    Мартынов и Муллер [23] показали, что коагуляция за счет дальнего взаимодействия частиц может иметь место при достаточно высоком значении фв-потенциала и низкой валентности противоионов. Для дисперсий с относительно крупными частицами характерно наличие глубокого вторичного минимума и, следовательно, дальняя коагуляция наиболее вероятна. Экспериментальные данные, которые мы приведем в следующих главах, убеждают в том, что фиксация сильно гидратированных частиц продуктов гидролиза алюминия и железа происходит преимущественно во вторичном энергетическом минимуме Рассмотрим силы взаимного притяжения и отталкивания частиц. [c.33]

    По-видимому, правильный подход к расчету оптимальной дозы коагулянта может быть осуш,ествлен, если исходить из наличия дальнодействующих сил притяжения между частицами, существование которых предсказано теорией ДЛФО и подтверждено многочисленными экспериментами. Действительно, очень многие свойства коагулятов, такие, как адгезионная способность, тиксотропия, приблизительное постоянство удельной поверхности во времени, относительно малая прочность и ее зависимость от вероятности коллективных взаимодействий частиц, могут быть удовлетворительно интерпретированы лишь с учетом взаимодействия частиц во вторичном энергетическом минимуме. О проявлении дальнодействующих сил говорит и тот факт, что все те меры физического воздействия, которые увеличивают вероятность дальнего взаимодействия частиц, способствуют ускорению коагуляции (см. гл. IV). [c.169]

    Развитие теории коагуляции частиц во вторичном энергетическом минимуме. Знание закономерностей коагуляции частиц за счет сил дальнего взаимодействия позволит объяснить влияние толщины и структурных свойств гидратных оболочек на прочность формирующихся агрегатов рассчитать величину сил, ответственных за прилипание хлопьев к материалам фильтрующих загрузок выявить такие условия коагуляции, при которых блин<-няя и дальняя агрегации частиц будут проявляться в наибольшей степени. [c.345]

    Концентрационная коагуляция, наблюдаемая у золей с сильно заряженными частицами, согласно теории ДЛФО, происходит вследствие электростатического эффекта сжатия двойного электрического слоя в результате увеличения концентрации индифферентного электролита в системе — толщина ионных атмосфер уменьшается. При этом наблюдается увеличение глубины вторичного потенциального минимума, что обусловливает возрастание вероятности дальней агрегации, а также изменяется форма потенциальных кривых парного взаимодействия частиц (рис. 7.2, в). На основании теоретических р с-четов Б. В. Дерягин и Л. Д. Ландау установили, что энергетический барьер исчезает на диаграмме энергия — расстояние между частицами золя , когда [c.612]

    Теоретический анализ процессов дальней агрегации показал [12], что для 1 — 1-зарядного электролита вторичный минимум заключен в пределах 3< х//<7 и его глубина существенно растет с увеличением концентрации электролита и константы Гамакера частиц, но малочувствительна к величине штерновского потенциала. Пороговая концентрация электролита в этом случае гораздо слабее зависит от заряда противоиона, чем при барьерном механизме коагуляции  [c.19]

    В наших опытах после часового нагрева гидрированного топлива Т-1 с добавкой 0,01 % вторичного октилмеркаптана образовались мелкие частип ы (рис. 68), процесс коагуляции которых можно было наблюдать в микроскоп. Так, после 2-часового нагрева топлива наблюдалось дальнейшее уплотнение и коагуляция мелких частиц (рис. 69). Конечная стадия образования нерастворимого осадка в присутствии вторичного октилмеркаптана [c.173]

    В упрощенном варианте теории ДЛФО с параллельными пластинами не учитываю тся размер частиц и их форма. Соотношения, полученные для энергии взаимодействия сферических частиц, показывают [см. уравнение ( 1.111)], что высота ионно-электростатического барьера и соответственно устойчивость к коагуляции повышаются с увеличением размера частиц. Высота потенциального барьера в первом приближении пропорциональна радиусу частиц. Увеличение размеров частицы приводит к возрастанию также глубины вторичного энергетического минимума. Это подтверждается тем, что процессы дальней агрегации особенно распространены в грубодисперсных системах, например в пастах и цементных растворах. [c.382]

    Так как началом коагуляции считают соприкосновение двух частиц и их слипание в один аггрегат с образованием вторичной частицы, дальнейший процесс можно представить как продолжающееся укрупнение аггрегатов, благодаря попарной встрече и соединению оставшихся первичных частиц с вторичными и т. д. — до образования крупных хлопьев. [c.234]

    Когда же их накопится значительное количество, то скорость их исчезновения, связанная с переходом их в частицы высших порядков, в некоторый момент станет равной скорости их накопления. В этот момент число вторичных частиц будет максимально. В дальнейшем, с убылью числа первичных частиц, скорость образования вторичных частиц начнет убывать, а вместе с этим начнет уменьшаться и их количество в нашей системе. Таким же образом происходит накопление и исчезновение при коагуляции третичных частиц и частиц более высоких порядков. [c.236]

    По исследованиям А. Ф. Борячека и др. твердая фаза суспензии гидроокиси магния в рассоле образована частицами, размеры которых колеблются от одного до десятков микрон. По-видимому, здесь идет речь о тех же вторичных частицах Mg (ОН) 2. Дальнейшая коагуляция вторичных частиц приводит к образованию отдельных хлопьев, которые представляют собой округлые, губчатые агломераты различной формы. На протяжении всего периода осаждения микроструктура суспензии фактически не изменяется, т. е. размеры частиц не увеличиваются и не меняется форма вторичных частиц. Из результатов этой работы следует, что процесс коагуляции гидроокиси магния резко замедляется на стадии образования вторичных частиц, очень слабо связанных между собой в хлопья. [c.76]


    При составлении книги встретились трудности, в частности связанные с применением терминов, не имеющих достаточно точного определения как в отечественной, так и в иностранной литературе. Так, фиксация микрообъектов во вторичном потенциальном минимуме, т. е. взаимная их фиксация на далеком друг от друга расстоянии, не имеет специального термина. Одни исследователи называют этот процесс коагуляцией во вторичном минимуме, другие — дальней коагуляцией, третьи — предлагают применять в этом случае термин флокуляция. Автор считает, что указанный процесс рационально назвать дальней агрегацией, оставляя за термином коагуляция обозначение непосредственного слипания дисперсных частиц или фиксации в первичном минимуме (ближняя агрегация). Под флокуляцией чаще всего понимают местное (локальное) структурообразо-вание, независимо от того, происходит ли оно в результате коагуляции или дальней агрегации. Такая неопределенность делает этот термин мало пригодным для точного описания процесса агрегации возможно его применение будет уместным при образовании между коллоидными частицами [c.5]

    И. Ф. Ефремовым [13] развито представление о том, что при желатинировании многих золей и суспензий возникновение пространственной сетки обязано силам притяжения между частицами, действующим при сохранении разделяющего их потенциального барьера. При достаточно высоком потенщ1але поверхности и малой толщине двойных ионных слоев, что соответствует сравнительно большой концентрации электролита в дисперсной системе, на результирующей кривой энергетического взаимодействия появляется яма, отвечающая дальним расстояниям. Если глубина такого минимума велика по сравнению с энергией теплового движения, то частица может зафиксироваться в нем, и наступит коагуляция, называемая в отличие от случая непосредственного контакта поверхностей коагуляцией во вторичном миниму.ме (рис. 1.1). [c.13]

    Энергия молекулярного и электростатического взаимодействий частиц одинакового размера, как следует из уравнений (VI.34) — (VI.35), прямо пропорциональна радиусу частиц. Поэтому увеличе1ше размера частиц влечет за собой увеличение потенциального барьера н глубины вторичного минимума. Основываясь на этом следствии из теории ДЛФО, можно заключить, что высокодисперсные системы (а 0,1 мкм) более склонны к ближней коагуляции (с преодолением потенциального барьера), а грубодисперсные (суспензии, эмульсии)—к дальней (во вторичном минимуме). [c.153]

    Дальнюю коагуляцию (во вторичном минимуме) в гру-бодисперсных системах можно существенно замедлить, применяя в качестве стабилизатора агрегативно устойчивые золи (дисперсные системы коллоидной степени дисперсности— м). При добавлении коллоидных частиц в грубодисперсные системы в результате коагуляции или гетерокоагуляции на поверхности крупных частиц образуется защитный слой из мелких, который экранирует молекулярные силы, действующие между крупными частицами, и тем самым способствует стабилизации системы. [c.154]

    Коагуляцию коллоидных систем в ультразвуковом поле наблюдал еше Дарсинг (1908 г.). В дальнейшем было установлено, что в докавитационной области облучение ультразвуком способствует коагуляции, однако с увеличением мощности поля начинает уже преобладать его диспергирующее действие. В ультразвуковых полях малой мощности малые частицы следуют за средой, в то время как крупные, обладающие большой инерцией, почти не увлекаются жидкостью. Таким образом, малые частицы как бы прошивают среду и оказываются в поле действия молекулярных сил больших частиц, что приводит к коагуляции. Д. С. Лычников и Г. А. Мартынов установили, что преодоление энергетического барьера и коагуляция возможны лишь, когда амплитуда колебания частиц соизмерима с расстоянием между частицами. Ультразвуковое поле как бы перебрасывает мелкие частицы из вторичного потенциального минимума в первичный. Если частицы нахо- [c.309]

    При высоких значениях а и А, не очень больших размерах частиц и высоких потенциалах их поверхности к.01агуляцяя связа на с преодолением потенциального барьера, ближняя яма существует, и ее глубина достаточно велика, так что при всех концентрациях электролита пептизация невозможна. При большом размере частиц (особенно анизометричных) возможна обратимая коагуляция во вторичном минимуме — в дальней потенциальной яме. [c.300]

    Аналогичный метод использован и для изучения влияния концентрации дисперсной фазы лиофобных золей на их устойчивость, при различных концентрациях электролитов. Учет коллективного-взаимодействия коллоидных частиц позволяет объяснить существенные различия в закономерностях коагуляции электролитами разбавленных и нарушении устойчивости концентрированных лиофобных золей. В частности, было найдено, что при постоянной объемной концентрации дисперсной фазы устойчивость концентри рованных систем с увеличением размера частиц проходит через максимум. Этот вывод был экспериментально подтвержден Отте-вилем 111оу. Если же численная концентрация частиц остается неизменной, то устойчивость системы с увеличением размера частиц, снижается монотонно. Одновременно для больших сферических частиц и толстых пластинчатых частиц характерно наличие глубокого вторичного минимума на потенциальных кривых, вследствие чего процессы дальней агрегации должны быть особенно распространены в низкодисперсных системах. [c.296]

    Агрегативная устойчивость и длительное существование лиофобных Д.с. с сохранением их св-в обеспечивается стабилизацией. Для высокодисперсных систем с жидкой дисперсионной средой используют введение в-в - стабилизаторов (электролитов, ПАВ, полимеров). В теории устойчивости Дерягина-Ландау-Фервея-Овербека (теории ДЛФО) осн. роль отводится ионно-электростатич. фактору стабилизации. Стабилизация обеспечивается электростатич. отталкиванием диффузных частей двойного электрич. слоя, к-рый образуется при адсорбции ионов электролита на пов-сти частиц. При нек-ром расстоянии между частицами отталкивание диффузных слоев обусловливает наличие минимума иа потенц. кривой (дальний, или вторичный, минимум см. рис.). Хотя этот минимум относительно неглубок, ои может препятствовать дальнейшему сближению частиц, притягиваемых силами межмолекуляриого взаимодействия. Ближний, или первичный, минимум соответствует прочному сцеплению частиц, при к-ром энергии теплового движения недостаточно для их разъединения. Сближаясь на расстояние, отвечающее этому минимуму, частицы объединяются в агрегаты, образование к-рых ведет к потере системой агрегативной устойчивости. При этом устойчивость системы к коагуляции определяется высотой энергетич. барьера. [c.82]

    Увеличение концентрации ЦТАБ в системе после достижения изоэлектрического состояния (>2,5-10 М) приводит к росту положительных значений электрокинетического потенциала. Однако степень агрегации частиц (вплоть до концентрации ЦТАБ 10 М) вновь начинает расти, что может быть обусловлено разрушением ГС при появлении заряда на поверхности частиц, а также некоторой гидрофобизацией поверхности при адсорбции ПАВ. Гидрофилизация поверхности частиц ЗЮг за счет двуслойной адсорбции ЦТАБ [512] маловероятна вследствие низкой степени покрытия ЗЮг ионами ЦТАБ вблизи изоэлектрической точки. Из расчета энергии взаимодействия сферических частиц при С=ЫО М следует, что коагуляция частиц во вторичном минимуме (доли кТ) невозможна. Она происходит в первичном минимуме при преодолении энергетического барьера. Положительная структурная составляющая расклинивающего давления, ограничивающая его глубину, может быть обусловлена как взаимодействием ГС воды на поверхности ЗЮг, так и взаимодействием адсорбционных слоев ПАВ.. Можно ожидать, что при данной концентрации степень покрытия поверхности кварца молекулами ПАВ близка к 20% [513]. Как видно из рис. 10.3, дальнейшее увеличение концентрации ЦТАБ вновь приводит к ее стабилизации (участок г), что может быть связано с образованием геми-мицелл на поверхности кварца, а также увеличением положительного значения -по-тенциала частиц ЗЮг. [c.179]

    На основе полученных выше общих критериев могут быть исследованы закономерности быстрой коагуляции при фиксации частиц во вторичном минимуме, существование которого вытекает из теории ДЛФО. На принципиальную возможность такой коагуляции впервые было указано Фервеем и Овербеком [4]. Правда, эти авторы предполагали, что для наступления коагуляции достаточно, чтобы число Мъ уравнении (XI.18) стало равным 0,1, тогда как на самом деле необходимо, чтобы его величина была не менее 10 (см. гл. XI, 2). Кроме того, Фервей и Овербек не исследовали закономерности такой дальней коагуляции, т.е. зависимость ее скорости от размера и концентрации частиц дисперсной фазы, концентрации электролита, заряда (или потенциапа) поверхности частиц и постоянной их молекулярного взаимодействия и тд. [c.163]

    Вопрос о возможности фиксации частиц на сравнительно далеких расстояниях, отвечающих координате вторичного минимума, впервые подробно рассмотрен Ефремовым и Нерпиным (284, 308—312]. Влияние электролитов на процесс дальней агрегации и зависимость физико-мехапических свойств систем, возникающих в результате его протекания, от концентрации и валентности противоионов в дисперсионной среде изучены в работах [313, 314]. Показано, что в отличие от соотношения = onst, установленного при исследовании коагуляции лиофобных коллоидов, в случае фиксации частиц относительно Друг друга на далеких расстояниях должно выполняться равенство = [c.51]

    Шенкель и Китченер [48] применили теорию Дерягина для описания взаимодействия частиц полистирола и определили условия их фиксации как на близком расстоянии, так и на дальнем — порядка 1000 А. Наблюдаемые отклонения они объясняют влиянием многовалентных противоионов. В частности, в растворе ЬаС1з происходила дальняя коагуляция, когда расчетная глубина вторичного минимума была меньше кТ. Вывод о фиксации частиц на дальних расстояниях был получен также Ван-ден-Темпелем [49]. Влияние электролитов на взаимодействие стеклянных шариков изучали Фукс и Николаева [50], показавшие применимость теории взаимодействия микрообъектов для расчета прочности коагуляционной структуры. К этому направлению относятся работы [51—54] и исследования коалесценции капель ртути в водных рас-ворах электролитов [55], взаимодействия сферических частиц А120з и условий их фиксации в первичном и вторичном минимумах [56], а также процессов флокуляции золей вольфрамовой кислоты [57], Аи, AgJ [58], парафина [59] и капель эмульсии [c.132]

    Ультразвуковое поле мало применялось для изучения элементарных процессов в дисперсиях. Известны работы, в которых облучение ультразвуком производилось с целью получения характеристики прочности гелей, сольватных слоев и т. д. Недавно Лычни-ков [87] в результате исследования влияния амплитуды ультразвукового поля на относительную скорость оседания глинистых частиц показал, что некоторая доля частиц фиксирована во вторичном минимуме, расположенном на расстоянии 150—200 А. Полак [88] в результате обсуждения влияния вибрации бетонных смесей пришел к выводу, что после укладки бетона в формы вибрация необходима для преодоления час гицами энергетического барьера и дальнейшего их слипания. Германе [89] считал, что ультразвук вызывает деформацию двойного ионного слоя и проявление дипольных сил, способствующих коагуляции. Авторы [90] в осадках из суспензий, подвергнутых воздействию ультразвука, обнаружили цепочечные агрегаты,возникающие в объеме суспензии, по-видимому, вследствие поляризованного взаимодействия частиц. Подобные цепочки образуются при седиментации частиц [91] и обнаруживаются в осадках [92—95]. [c.136]

    В случае неорганических электролитов пентизированный золь обычно снова коагулирует при дальнейшем добавлении электролита и, таким образом, появляется зона вторичной коагуляции. В случае же органических электролитов зона вторичной коагуляции проявляется не столь отчетливо. [c.256]

    Энергия частиц недостаточна для преодоления барьера отталкивания, но глубина вторичного минимума достаточна для удержания частиц вместе. Происходит коагуляция за счет дальнего взаимодействия частиц. Зонтаг и Штренге [22, стр. 10] неправильно называют этот последний случай коагуляции флоку-ляцией . [c.33]

    И. Высота барьера и глубина дальнего (вторичного) минимума невелики (порядка кТ или меньше). Частицы в этом случае могут беспрепятственно сближаться в результате броуновского движения и коагулировать в ближнем (первичном) минимуме. Поскольку глубина первичного минимума, как правило, много больше кТ, то агрегация в ближней яме необратима. Отсюда видно, что добиться коагуляции при отсутствии глубокого вторичного минимума можно за счет снижения высоты потенциального барьера до значений, соизмеримых с энергией броуновского движения частиц. Это достигается, например, увеличением концентрации электролита, которое приводит, с одной стороны, к сжатию ДЭС и тем самым к снижению высоты барьера и к его смещению в сторону поверхности, а с другой — к уменьшению г] -потенциала частиц. Оба эти эффекта снижают энергию отталкивания. Первый случай — так называемая концентрационная коагуляция — характеризуется высоким значением фгпотенциала не только в исходном, но и в критическом состоянии системы она имеет место при добавлении к дисперсии 1 — 1-зарядных электролитов. Второй случай — нейтрализационная коагуляция — обусловлена либо снижением величины г151-потенциала частиц до весьма низких значений в результате адсорбции многозарядных противоионов, либо десорбцией с поверхности частиц потенциалопределяющих ионов. Механизм коагуляции реальных золей, по-видимому, смешанный, с преобладанием — в зависимости от условий — концентрационного или нейтрализационного эффекта. [c.18]

    III. Глубина вторичного минимума достаточно велика ( к5—10 кТ). В этом случае, независимо от высоты барьера, частицы коагулируют во вторичном минимуме. Это — так называемая дальняя агрегация. При большой глубине дальней ямы агрегированные в ней частицы не могут подойти друг к другу на близкие расстояния (этому мешает потенциальный барьер), но и не могут разойтись, так как энергия их недостаточна, чтобы выскочить из относительно глубокой ямы такие агрегаты совершают совместное броуновское движение. При небольших глубинах вторичного минимума (как правило, <.U<. OkT) существует возможность распада агрегатов и взаимная фиксация частиц происходит лишь при достаточно высокой концентрации твердой фазы с образованием так называемых периодических коллоидных структур, теория которых развита Ефремобым [11]. В работах Шенкеля и Китченера, Ефремова и Усьярова и других показано, что коагуляция во вторичном минимуме характерна для крупных частиц с размерами несколько сот или тысяч нанометров (латексы, суспензии кремнезема, глинистых минералов и т. п.). [c.19]


Смотреть страницы где упоминается термин Коагуляция вторичный дальний : [c.265]    [c.265]    [c.77]    [c.176]    [c.179]    [c.332]    [c.128]    [c.296]    [c.176]    [c.271]    [c.40]    [c.168]    [c.132]   
Коллоидная химия 1982 (1982) -- [ c.260 , c.297 ]




ПОИСК





Смотрите так же термины и статьи:

Коагуляция

Коагуляция дальняя



© 2024 chem21.info Реклама на сайте