Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Компрессоры расход сжатого газа

    В качестве примера рассмотрим процесс зарядки и разрядки батареи аккумуляторов. Из закона сохранения энергии следует, что если мы при зарядке батареи до определенного состояния затрачиваем некоторое количество энергии, то при обратной разрядке до исходного состояния она отдаст то же количество энергии. Очевидно, что в зависимости от того, как будет производиться эта разрядка, выделение энергии может происходить в различных формах. Можно, например, всю энергию израсходовать на работу электромотора, который будет совершать механическую работу (подъем груза, сжатие газа с помощью компрессора и др.). В этом случае у = 0 и Л /=—А. Можно разрядить батарею, соединяя ее с электронагревательными приборами, расходуя всю выделяю- [c.188]


    Явление помпажа объясняется следующим образом. При уменьшении производительности компрессора до Сд/давление растет и прп Q f становится максимальным при даль- р мпа нейшем уменьшении про- м.яАт изводительности давление резко падает. В этом случае прекращается подача газа и возможен даже обратный переток с линии нагнетания на линию всасывания. Так как расход сжатого газа не изменяется, давление налипни нагнетания быстро падает и компрессор возобновляет подачу. В системе начинается пульсация подачи [c.183]

    Введем следующие обозначения V и V — производительность компрессора и расход сжатого газа, отнесенные к начальным условиям всасывания, м сек Vf,e — емкость ресивера, включая емкость трубопроводов, [c.609]

    Оксид (IV) СОг сжимают до рабочего давления 18,24— 22,29 МПа. С этой целью используют многоступенчатые поршневые компрессоры. Однако в последнее время, как и в процессе синтеза аммиака, для сжатия СОг ДО рабочего давления начинают использовать высокопроизводительные турбокомпрессоры или применяют комбинацию турбокомпрессор — для начального сжатия значительного объема газа и поршневой компрессор — для сжатия газа до давления синтеза. К преимуществам турбокомпрессоров можно отнести также меньшие капиталовложения, возможность работы без резерва, меньшие расходы на эксплуатацию и ремонт. [c.145]

    Регулирование компрессоров производится для изменения их производительности в соответствии с потреблением (расходом) сжатого газа при постоянном давлении сжатия. [c.228]

    Как известно, площадь диаграммы выражает работу, совершаемую в процессе сжатия газа. Легко видеть, что эта работа будет наименьшей при изотермическом сжатии и наибольшей — при адиабатическом. При охлаждении газа в компрессоре через рубашку процесс сжатия приближается к изотермическому, причем соответственно снижается расход энергии на сжатие газа. [c.224]

    Режим расхода сжатого газа обычно подвержен колебаниям, а вместе с ним колеблются в широких пределах соотношения между длительностью периодов работы и перерывов в работе. В таких условиях наибольшая экономия мощности может быть достигнута устройством комбинированной системы регулирования, осуществляемой остановками компрессора и переводом его на холостой ход с автоматическим переключением с одного регулирования на другое при изменении нагрузки. [c.596]

    Реле 25, ограничивающее длительность холостого хода, вводится в действие пневматическим регулятором производительности 12 в момент перевода компрессора на холостой ход. Перевод с регулирования холостым ходом на регулирование остановками достигается тем, что реле времени 25 посредством электромагнитного выключателя 24 замыкает ток в соленоиде трехходового клапана 22. Одновременно с этим включается в цепь реле времени 26 и выключается реле времени 25, так как клапан 22 переключает цилиндр пневматического регулятора производительности 12 на атмосферу и он, прекращая свое действие, опускается в нижнее положение. В то же время компрессор возобновляет подачу, но продолжает ее лишь до тех пор, пока электрический регулятор 2, установленный на несколько более высокое давление, чем пневматический регулятор 12, не разомкнет цепь соленоида общего электромагнитного выключателя 18 и этим остановит двигатель. Пуск двигателя производится тем же электрическим регулятором 2 после снижения давления в ресивере на заданную величину и осуществляется автоматически с переключением со звезды на треугольник. С ростом расхода сжатого газа сокращаются периоды остановок и увеличиваются периоды работы под нагрузкой. Когда последние достигают установленного времени, реле 26, размыкая цепь соленоида электромагнитного выключателя 24, вводит этим в действие систему регулирования холостым ходом, а само выключается. [c.618]


    Расход сжатого газа изменяется в широких пределах в зависимости от режима работы аппаратов, машин и пневматических инструментов. Количество газа, подаваемое компрессором, зависит от температуры всасываемого газа, его давления, влажности, а также от состояния компрессора и числа оборотов. Номинальная производительность компрессора, если она выбрана с избытком, может значительно превышать максимальное потребление. Задача регулирования состоит в том, чтобы поддерживать равенство между производительностью компрессора и расходом газа. При регулировании производительность снижают в пределах ог номинальной до нуля. [c.177]

    Предупреждение перегрева компрессоров при сжатии газов обеспечивают разделением процесса сжатия газов на несколько ступеней, если по условиям технологии требуется 4—5-кратное сжатие устройством систем охлаждения газа на каждой ступени сжатия установкой предохранительного клапана на нагнетательной линии за компрессором автоматическим контролем и регулированием температуры сжимаемого газа путем изменения расхода охлаждающей жидкости, подаваемой в холодильники автоматической системой блокировки, обеспечивающей отключение компрессора в случае увеличения давления или температуры газа в нагнетательных линиях очисткой теплообменной поверхности холодильников и внутренних поверхностей трубопроводов от нагаромасляных отложений. [c.67]

    Необходимым и достаточным условием для аэродинамической устойчивости является работа компрессора на ниспадающем участке характеристики Q — рц, т. е. в области, расположенной правее точки максимального давления. При уменьшении расхода сжатого газа ниже критического значения возникает помпаж, который сопровождается обычно довольно сильными сотрясениями машины и ее коммуникаций и может привести к повреждениям и аварии компрессора. [c.360]

    Регулирование дросселированием возможно в одноступенчатых компрессорах путем установки клапана на всасывающей трубе. При чрезмерном давлении газа в газосборнике клапан опускается и перекрывает всасывающую трубу. Такой способ регулирования связан с увеличением степени сжатия газа и, следовательно, с увеличением расхода энергии. Он наименее экономичен, так как сопряжен с потерей энергии на сжатие перепускаемого газа. [c.228]

    Расход сжатого газа обычно непостоянен. Он может изменяться иногда в широких пределах и иметь более или менее частые колебания в зависимости от характера потребляющих его аппаратов, машин и инструментов и режима их работы. Весовое количество газа, подаваемое компрессором, тоже не совсем постоянно. Оно меняется с температурой всасываемого газа, с его давлением и влажностью, а также зависит от состояния компрессора. Номинальная производительность компрессора, если она выбрана с избытком, в отдельных случаях значительно превышает максимальное потребление. Задача регулирования состоит в том, чтобы приводить производительность компрессора к равенству с расходом газа. При регулировании производительности ее величину изменяют, снижая ниже номинальной. [c.508]

    С( — массовый расход смеси газ — твердые частицы Н — политропическая удельная работа (напор) сжатия газа в компрессоре [c.616]

    В мембранном компрессоре рабочая камера разделена мембраной, зажатой по контуру между крышкой и опорной плитой (рис. 17.2). Клапаны расположены в крышке. Объемный расход газа на входе у таких компрессоров небольшой (менее 2 м мин), но степень повышения давления в одной ступени очень высокая (е до 25). Поэтому их обычно используют в качестве дожимных после предварительного сжатия газа компрессорами других видов. [c.214]

    В третьей ступени с увеличением начального давления при неизменном значении конечного мощность изменяется так же, как в одноступенчатом компрессоре сначала возрастает, а затем падает. Усилие в поршневом штоке третьей ступени уменьшается. Суммарная мощность возрастает, но вследствие увеличение подачи удельный расход мощности на сжатие газа сокращается. [c.249]

    Поршневые компрессоры по сравнению с центробежными характеризуются возможностью сжатия газа до больших давлений при меньшей производительности, а также с меньшим удельным расходом энергии. Они имеют ряд недостатков, свойственных всем машинам с возвратно-поступательным движением большие габариты, значительную массу фундамента, тихий ход, наличие быстроизнашивающихся трущихся частей, пульсирующую подачу газа, вызывающую вибрацию. [c.310]

    Экономия от снижения стоимости сырого бензола не покрывает расходов на сжатие газа при использовании установок малой единичной мощности, оснащенных поршневыми компрессорами. Абсорбция под давлением становится рентабельной, если в дальнейшем коксовый газ используется при повышенном давлении (передача газа в сеть дальнего газоснабжения, фракционная конденсация газа с выделением водорода, использование коксового газа для вдувания в доменные печи). Использование газа при повышенном давлении высокорентабельно на установках большой единичной мощности, оснащенных центробежными компрессорами, и особенно в случае использования газотурбинного привода [21]. Оптимальным давлением, как показано технико-экономическим анализом [22], является 0,8 МПа. [c.154]


    Многоступенчатое сжатие газа. Увеличение степени сжатия в одноступенчатом компрессоре свыше 5 приводит к снижению к. п. д. компрессора, кроме того, сильно возрастают температура сжатого газа и расход энергии на сжатие. [c.110]

    Многоступенчатое сжатие. С увеличением степени сжатия в одной ступени возрастают потери, связанные с сжатием газа во вредном пространстве, и уменьшается к. п. д. компрессора. Кроме того, происходит сильное нагревание газа и возрастает расход энергии на его сжатие. Если известны величины сил, то по формуле (7-39), приняв = 0. можно найти предельную степень одноступенчатого сжатия, при которой производительность компрессора падает до нуля. [c.226]

    Рассмотрим вначале работу поршневого компрессора при отсутствии регулятора, предполагая, что сжатый газ поступает в коллектор или газосборник, а затем в сеть и далее к отдельным потребителям. Массовый расход газа, поступающий из компрессора [c.275]

    Под влиянием внешних воздействий установившийся режим может быть нарушен. Чаще всего это происходит в результате изменения нагрузки, т. е. потребления сжатого газа сетью. Такое воздействие называется главным или основным возмущением. Возмущающие воздействия могут возникать вследствие взаимодействия системы с окружающей средой. Например, в поршневом воздушном компрессоре при падении давления всасываемого воздуха или увеличении его температуры происходит уменьшение массового расхода нагнетаемого воздуха. Такое воздействие, как правило, вызывает меньшие возмущения и потому его называют дополнительным. Режимы работы регулируемого объекта между двумя установившимися режимами называют переходными. [c.276]

    Расход сжатого газа обычно непостоянен. Он может изменяться иногда в широких пределах в зависимости от характера потребляюш,их аппаратов, машин и инструментов и режима их работы. Масса газа, подаваемая компрессором, тоже не постоянна. Она изменяется с изменением температуры, давления и влажности всасываемого газа, но зависит и от состояния компрессора. Номинальная производительность компрессора, если она выбрана с избытком, в отдельных случаях значительно превышает максимальное потребление. Задача регулирования — приводить в соответствие производительность компрессора и расход газа. [c.532]

    Выполняя, по существу, функции таких машин, как насосы для перекачивания жидкостей, вакуум-насосы для отсасывания газов и паров из замкнутых объемов, а также компрессоры для сжатия газов и паров, И. имеют несравненно более простое устройство, несоизмеримо меньшую металлоемкость и значительно ббльшую компактность при чрезвычайной простоте обслуживания. Этим преимуществам И. противостоит их низкий кпд (расход энергии на инжек-цию часто в 2—3 раза выше, чем па насосы и компрессоры кпд И. — отношение количества энергии, сообщенной инжектируемому потоку для повышения его давления и скорости, к количеству энергии, потерянной инжектирующим потоком при его расширении до состояния смешанного потока). Этот недостаток И. ограничивает область их применения в пром-сти сравнительно немногочисленными случаями, когда затраты энергии либо не играют определяющей роли, либо покрываются какими-либо практич. преимуществами. Так, И. широко применяют для создания или поддержания вакуума в аппаратах при необходимости отсасывания паров (или парогазовых смесей) химически агрессивных веществ, когда использование обычных вакуум-насосов затруднено из-за коррозии. В качестве инжектирующего потока в этих случаях чаще всего применяют пар или воду. [c.135]

    При проведении испытаний измеряют эффективную мощность, частоту вращения коленчатого вала, производительность компрессора, часовой и удельный расходы топливного газа и смазочного масла, расход воды на охлаждение силовой части агрегата и циркуляционного масла, расход сжатого газа на один пуск и на системы КИПиА, барометрическое давление, давление сжатия и вспышки в силовых цилиндрах газа на входе и выходе из компрессорного цилиндра, продувочного воздуха, масла на входе и выходе пз агрегата перед масляным фильтром и после него, топливного газа, о.хлаждающей воды на в.ходе в агрегат, пускового воздуха и воздуха перед компрессором системы турбонаддува, температуру окружающей среды, воды, поступающей в агрегат и выходящей из него, циркуляционного масла, входящего в агрегат и выходящего из него, масла, вы.кодящего из поршня (при охлаждении поршня маслом), продувочного воздуха, топливного газа, газа на входе в компрессорную часть агрегата и выходе из нее, отработавших газов по цилиндрам и перед турбиной наддува. Помимо [c.266]

    Число технических процессов в промышленности, строительстве, сельском хозяйстве и транспорте, требующих сжатого или разреженного воздуха или других газов либо паров, постоянно возрастает. Часто даже в крупных производствах требуется газ в сравнительно небольших количествах, что исключает возможность применения центробежных компрессоров. При сжатии газов малых и средних объемов в компрессорах с воз-вратно-поступательным движением поршня достигаются удовлетворительные значения удельного расхода энергии, но вес машин получается очень большим. Если давление нагнетания не очень велико, значительно целесообразнее при небольшой и средней производительности применять ротационные компрессоры. Согласно принятой в работе [1] классификации, это объемные компрессоры с одним или двумя, иногда тремя роторами, вращающимися вокруг осей, параллельных оси цилиндра. Если машиной отсасывается газ с давления ниже атмосферного, а давление нагнетания примерно равно атмосферному, то такие машины называются вакуум-насосами. [c.4]

    На автогазонаполнительных компрессорных станциях природный газ, поступающий из газопровода, очищается от капель жидкости и механических частиц в сепараторе и фильтре, затем измеряется его расход и газ подается иа прием компрессорных установок. Сжатый до 25 МПа газ направляется на установку осущки, далее в аккумуляторные емкости, а из них через запорную и регулирующую аппаратуру — к газозаправочным колонкам. Стационарные автогазонаполнительные компрессорные станции могут создаваться в блочном исполнении— 125, 250 и 500 заправок в сутки. Затраты на сооружение и эксплуатацию автогазонаполнительных компрессорных станций существенно выше, чем в случае обычных автозаправочных станций, что обусловлено сложностью оборудования и высокими энергетическими затратами на компримирование газа. Энергетические затраты при этом в значительной мере определяются давлением, при котором газ поступает на компрессоры из газопровода. Например, при увеличении входного давления газа с 0,5 до 4,0 МПа удельный расход электроэнергии на сжатие газа снижается в 2,3 раза. [c.127]

    При использовании газов с разными температурами производительность компрессоров удобнее оценивать приведенным коэффи-циентО М эжекции лТ/ 0. При сохранении степени сжатия постоянной изменение температур пассивного и активного газов приведет к изменению производительности компрессора. Расход пассивного газа при э гом может быть рассчитан из условия постоянства величины п 1/ е. [c.47]

    Если автоматика у небольших и средних компрессоров делается с целью устранения обслуживающего персонала, то в больших установках она скорее служит для предупреждения аварии ман1ин. Несмотря на то, что автоматическое оборудование стоит дорого, оно значительно повышает экономичность эксплуатации главным образом при переменном расходе сжатого газа и предохраняет от потерь, связанных с нарушением подачи газа при авариях. [c.293]

    Во время эксплуатации расход сжатого газа меняется в зависимости от количества работающих блоков, характера сырья, состояния катализатора, технологического режима и т. д. В связи с этим при работе компрессорных цехов необходимо производительность компрессоров приравнивать к расходу газа. Это достигается регулированием, которое должно обеспечить плавное изменение производительности, экономичный расход мощности, а также иметь простое устройство, згомпактность и легко обслуживаться. [c.160]

    Расходы водяного пара и топлива, а также электроэнергии, ва 1 m перерабатьшаемого сырья изменяются в весьма широких пределах в зависимости от типа применяемых на крекинг-установках двигателей для привода воздуходувок, компрессоров для сжатия углеводородных газов и насосов. Расход энергии зависит также от глубины крекинга сырья, выходов кокса и гааа, коэффициента рециркуляции газойля, кратности циркуляции катализатора, степени использования отходящего тепла, атмосферных условий, темнературы охлаждающей воды и т. д. [c.294]

    Действительный процесс сжатия в цилиндре компрессора существенно отличается от теоретического. Прел<де всего в конце нагие-т ПИЯ не весь газ выталкивается в нагнетательный трубопровод, ЧсСть его остается между клапанами и крайним положением поршня . В поршневых компрессорах между крайним положением порш-Н5 и крышкой цилиндра всегда устанавливается определенный з зор. Сжатый газ, оставшийся после нагнетания в цилиндре, занимает объем, называемый вредным пространством Уо (рис. 124). Прп обратном ходе поршня газ, заключенный во вредном нростран-стве, расширяется по линии 2—1 и отдает почти всю энергию, которая была затрачена на его сжатие. Таким образом, наличие вредного пространства пе влияет на расход энергии. Кроме того, сжатый газ, находящийся во вредном пространстве, смягчает действие инерцио1П1ых сил поршня вблизи крайнего его положения. [c.214]

    По одну сторону винтов их полости заполнены газом, находящимся на различной стадии сжатия. Назовем эту сторону винтов комирессора стороной или областью сжатия газа. В области сжатия газа окружные скорости винтов направлены навстречу друг другу и зубья винтов сходятся. С противоположной стороны окружные скорости винтов направлены друг от друга и зубья винюв расходятся. Здесь во впадинах создается разрежение, благодаря чему происходит процесс всасывания газа. Эту сторону винтов компрессора назовем областью всасывания. Условно можно считать, что области всасывания и нагнетания разделены между собой плоскостью продольных осей, т. е. плоскостью, в которой лежат оси обоих винтов. По периметру эти области соединяются через зазоры между корпусом и винтами по вершинам зубьев и с торцов. Между ви1гга-ыи они соединяются зазорами по линии контакта винтов. [c.255]

    Та же фирма провела более глубокие исследования внешнеадиабатического сжатия газа в поршневом газовом компрессоре с целью уменьшения эксплуатационных расходов на внешнее охлаждение компрессорных машин. Детали исследуемого компрессора были точно измерены для определения степени износа при работе компрессора без охлаждения. Затем поршневой компрессор эксплуатировался без водяного охлаждения. 30 дней и снова его детали были измерены. В результате сопоставления данных первого и второго измерений оказалось, что величина износа находилась в таких же пределах, что и при работе компрессора с водяным охлаждением цилиндров. Далее испытания внешнеадиабатического сжатия были продолжены еще 60 дней, и после этого не было обнаружено ускоренного износа деталей. [c.135]

    Давление в конечный момент сжатия может понизиться по сравнению с внешнеадиабатическим режимом работы компрессора, а температура газа перед турбиной возрасти. Повышение температуры газа перед турбиной, уменьшение удельной работы сжатия (уменьшение мощности турбины, так как в исследуемом ГТД Мгс=М г), увеличение массового расхода рабочего тела и снижение его плотности при более высокой температуре способствуют увеличению скорости истечения отходящих газов из реактивного сопла и росту удельной тяги и тяги двигателя. [c.270]

    Центробежные компрессоры. Центробежные компрессоры обладают высокими технико-экономическнмн показателями и имеют существенные иреи.мущества перед поршневы.ми машинами, особенно при больших объемах сжимае.мого газа и умеренном перепаде давления (от 0,8 до 1,5 МПа). При указанных параметрах сжатие газа осуществляется в однокорпусных агрегатах, без промежуточного охлаждения сжимаемого газа, что существенно упрощает исполнение компрессорной установки снижает габариты, расход металла, упрощает обслуживание и экс-]луатацию. [c.182]

    Цилиндры с подвешенным поршнем. Цилиндры самых крупных горизонтальных компрессоров (диаметром более 1000 мм) иногда выполняют с поршнем, который подвешен на сквозном штоке, опирающемся концами на крейцкопф и ползун. При этом полностью устраняется износ поршня, уменьшается износ цилиндра и несколько снижается расход энергии. Однако устройство добавочных параллелей, ползунов и сальников усложняет конструкцию, увеличивает габариты компрессора и массу гюступа-тельно движущихся частей. Такое выполнение целесообразно лишь в компрессорах для сжатия очень загрязненных газов. [c.129]

    Задача непосредственной передачи энергии решена в дизель-компрессоре со свободными поршнями, который действует следующим образом. Энергия газа, расширяющегося в цилиндре дизеля, сообщает движение двум поршневым группам, синхронно движущимся в противоположные стороны, и перемещает их к внешним мертвым точкам (рис. 1У.27). В начале этого хода противодавление газа в цилиндрах компрессора еще невелико, поэтому лишь небольшая доля сил, действующих на поршни дизеля, затрачивается на преодоление давления и сил механического трения. Избыток движущих сил со стороны дизеля над силами сопротивления со стороны компрессора расходуется на увеличение скорости движения поршней, в результате чего избыточная энергия трансформируется в кинетическую энергию поршневых масс. По мере сжатия газа в цилиндрах компрессора противодействие со стороны компрессора возрастает. При некотором положении поршней силы противодействия компрессора становятся равными, а затем превышают уменьшающиеся по ходу поршней движущие силы дизеля. Поршни получают обратное ускорение и передают компрессору запасенную ими энергию, которая расходуется на дальнейшее сжатие газа. Возврат поршней к внутренним мертвым точкам происходит за счет энергии сжатого газа, оставшегося в намеренно увеличенных мертвых пространствах цилиндров компрессора. Таким обра.зом, в машинах, действующих по описанному принципу, свободные поршни выполняют аналогично маховику роль аккумулятора энергии. [c.145]

    Этот удельный расход энергии соответствует определенной степени сжатия. Изменсггие степени сжатня при прочих равных условиях изменяет и 5уд. Поэтому сравнение удельных расходов энергии с целью выяснения энергетической эффективности данного компрессора можно производить только для компрессоров, нагнетающих одинаковые газы с одинаковыми степенями сжатия. [c.376]


Смотреть страницы где упоминается термин Компрессоры расход сжатого газа: [c.267]    [c.254]    [c.35]    [c.135]    [c.556]    [c.228]    [c.13]    [c.316]   
Основы технологического проектирования производств органического синтеза (1970) -- [ c.162 ]




ПОИСК





Смотрите так же термины и статьи:

Компрессор для сжатия

Компрессоры для сжатия газов

Расход газов



© 2025 chem21.info Реклама на сайте