Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эластичность реального

    Эластичность реального каучука [c.165]

    Наряду с системами солевой вулканизации реальные резины должны содержать также системы ковалентной вулканизации, обеспечивающие образование необходимого количества прочных сшивок, определяющих сохранение формы изделия в процессе его эксплуатации, температурный ход эластичности и другие важные свойства. Гидроокись кальция не препятствует проведению серной вулканизации, однако она ускоряет ее, разрушает отдельные ингредиенты систем серной вулканизации и, по-видимому, оказывает существенное влияние на структуру образующейся сетки. Поэтому результаты, полученные при серной вулканизации без гидроокиси кальция, нельзя переносить на вулканизацию в ее присутствии и необходима разработка специальных систем серной вулканизации. [c.409]


    Кроме обратимых упругих деформаций и необратимых деформаций пластического и вязкого течения, реальные твердые тела характеризуются процессами упругого последействия и гистерезиса ( упругих задержек ), т. е. замедленной упругости. В отличие от идеально упругой деформации, которая развивается и медленно спадает со скоростью распространения звука в данном теле, упругое последействие, или медленная эластичность, представляет собой дополнительную деформацию, медленно развивающуюся после разрушения и также медленно спадающую после разгрузки (рис. 3). Такая деформация обратима механически (по величине) и в этом [c.11]

    Четкое разграничение между этими группами провести трудно, поскольку не существует абсолютно жестких и идеально эластичных материалов, и в этом смысле все реальные вещества по существу относятся к третьей группе. Однако приведенное относительное разграничение оказывается удобным, так как в химической технологии многие материалы, подлежащие сушке, можно отнести к первой группе. При анализе процесса сушки таких веществ можно пренебречь изменением размеров тела. [c.234]

    Деформация реальных эластомеров. В рассмотренных идеализированных кинетических теориях эластичности не принималось во внимание наличие у реальных полимерных систем потенциального (энергетического) барьера, а также и то, что внутреннее вращение заторможено и что энергия различных конформаций неодинакова. Другими словами, не учитывалось то, что упругость чисто энтропийного происхождения не существует, так же как не существует идеальный газ. [c.379]

    Измерения вязкости этих растворов свидетельствуют о наличии структурной вязкости при малых скоростях сдвига. Это дает основание предположить, что ОП-10 стабилизирует пену не за счет эффекта Гиббса—Марангони, а за счет структурно-механического фактора. Результаты, полученные на полиэфирах, были проверены в реальных условиях при получении жестких пенопластов. Проверка результатов в производстве эластичных пен, где роль ПАВ проявляется значительно сильнее, будет проведена в ближайшее время. [c.137]

    Особенно большое распространение в последнее время получило применение поливинилового спирта и его дериватов при производстве синтетических волокон и синтетических кож. Структура поливинилового спирта предоставляет широкие возможности для химической модификации, что открывает реальные пути для создания ряда сортов волокон н кожзаменителей с повышенной эластичностью, открытой пористостью, гигроскопичностью, улучшенной окрашиваемостью и рядом других свойств. [c.177]


    Исходя из данных об исчезновении члена с коэффициентом при набухании полимера, полагали [98], что его происхождение связано с неравновесным характером эксперимента. Однако в настоящее время склонны считать, что появление обусловлено недостатками статистической теории эластичности с одной стороны, пренебрежением реальной структурой аморфных полимеров [44, 99], с другой — невыполнимостью указанных допущений (аффинность деформации и гауссовость ценей) [100]. [c.191]

    Многие реальные твердые тела, например резина, обладают повышенной эластичностью. Они характеризуются низким модулем [c.31]

    Линейная зависимость модуля от абсолютной температуры подтверждается опытом, однако основные допущения (свободное вращение звеньев, пренебрежение изменением внутренней энергии при деформации, игнорирование межмолекулярного взаимодействия) приводят к тому, что поведение реальных каучукоподобных материалов не соответствует теории эластичности, основанной на представлениях об идеальной сетке. [c.139]

    Эластичность реального каучука. Деформация реального каучука никогда не является полностью высокоэластической. Условие независимости внутренней энергии от деформации выполняется только приближенно и при не слишком больших растяжениях. (порядка нескольких десятков процентов при комнатной температуре). При больших деформациях в ряде каучуков начинает развиваться кристаллизация (например, в натуральном каучуке, бутилкаучуке или полихлоропрене), приводящая к возникновению существенной зависимости внутренней энергии от деформации и, следовательно, к изменению природьг эластичности. В случае некристаллизующихся каучуков (бутадиеновых каучуков) при больших деформациях также возникает зависимость внутренней энергии (или объема) от величины деформации, т. е. наряду с высокой эластичностью проявляется упругость кристаллического типа. В последнем случае изменение механизма упругости вызвано тем обстоятельством, что в сильно деформированном образце гибкость выпрямленных цепей весьма ограничивается приложенными растягивающими силами. Иначе говоря, при большой деформации растяжения выпрямленная цепь ведет себя, как жесткая молекула. Вследствие этого дальнейшее развитие деформации приводит к проявлению упругости, характерной для кристалла. [c.200]

    XIII. Краткое обсуждение других теорий эластичности реального каучука [c.130]

    Трудно в настоящее время определить относительный вклад эффектов Гиббса и Марангони в реальных системах. Пленочный эффект Гиббса можно вычислить, но проблематичным остается наличие градиента поверхностного натяжения. Эластичность Гиббса практически должна быть равна нулю для концентрированных растворов ПАВ, так как а/с с О при концентрации ПАВ выше ККМ. Однако такие растворы являются сильно эластичными. Исследования ио затуханию волн позволят, вероятно, разъяснить эту проблему. Когда волна проходит вдоль жидкой поверхности раздела, наблюдается некоторое затухание амплитуда колебаний уменьшается из-за разности значений вязкйсти по объему жидкости. Затухание значительно усиливается, если жидкость является раствором ПАВ или имеется нерастворимый ыопослой. В этом случае волны расширяют и сжимают поверхность, вызывая противосилы, которые отсутствуют в чистых жидкостях. [c.88]

    ДАЛЬНЕЙШЕЕ РАЗВИТИЕ СТАТИСТИ ЧЕСКИХ ТЕОРИИ ВЫСОКОЙ ЭЛАСТИЧНОСТИ ПОЛИМЕРНЫХ СЕТОК Миогопараметрические уравнения деформации ф Теория реальных сеток Зябицкого фТео-рия Кроссленда и Ван-дер-Гоффа [c.118]

    Предельные состояния обычно изображаются с помощью некоторых поверхностей в пространстве главных напряжений. При монотонном изменении свойств полимера под действием внешнега воздействия происходит соответствующее мбнотонное изменение предельных поверхностей. Для получения обобщенного критерия предельного состояния чаще всего используют двойственную модель твердого деформируемого тела [11.8] с целью аналитического расчета свойств хрупкости и вынужденной эластичности проявляющихся при деформировании реальных твердых полимеров. В двойственной модели деформация представляется в виде суммы двух составляющих, обусловленных хрупкими и пластическими свойствами полимера. Таким образом, вводятся два параллельных реологических элемента, описывающих отдельно хрупкие и пластические свойства полимера. Иногда в реологическую модель включают элемент разрушения для того, чтобы связать процесс деформирования с процессом разрыва связей, что особенно существенно для полимеров. [c.285]

    Рассмотренные модели (а также более сложные их комбинации) отражают в известной степени свойства реальных систем, а экспериментальные кривые г — и е — i позволяют найти параметры, характеризующие их структурно-механические свойства. Пример кривой е — t, полученной для реальной системы (цемент, глинистая паста) при S = onst (рис. 108), представляет собой сочетание кривых, типичных для упруговязкой и эластичной моделей. [c.277]


    При прилолсении внутреннего давления в изоляции возникают нормальные напрял ения растяжения ой. В случае эластичного материала они составляют небольшую величину. Но если модуль упругости материала возрастает (например, по причине старения), то оа реально снижает долговечность изоляции. Так, в случае ПВХ покрытий, когда модуль упругости их может увеличиться до 5000 МПа, 04 увеличивается примерно на 2—3 МПа. Оно изменяется по величине вслед за изменением внутреннего давления в трубопроводе. [c.102]

    Обычная термодинамическая трактовка случая III предполагает поверхность раздела фаз столь же идеально гладкой, как и в случае контакта флюидов. Поэтому применять выводы этой трактовки к реальным ситуациям следует с осторожностью. Особенностью кристаллических тел является анизотропия поверхностного натяжения — его зависимость на данной грани от направления (в противоположность свободной поверхностной энергии). Поверхностное натяжение может также меняться в зависимости от состояния деформации твердого тела, В работе Русанова [4] рассмотрено влияние деформации на краевой угол, что открывает возможность экспериментального обнаружения этого эффекта на эластичных телах, хотя и не позво.пяет определять абсолютные значения поверхностного натяжения. [c.8]

    С целью устранения этих недостатков разработан метод определения морозостойкости резин при растяжении на 10%. Метод испы тания заключается в нахождении массы груза, под действием которое го образец растягивается на 10% при комнатной температуре в течение 30 с, и растяжении образца этим же грузом при низкой температуре. По отношению модулей эластичности образца при комнатной и низкой температурах вычисляют коэффициент морозостойкости. Этот метод испьгганий включен в ГОСТ 408-78 в качестве метода Б. По- скольку в процессе испытания точно известны напряжение и дефор- мация образца, измеряемый модуль является реальным и может быть использован при расчете конструкции резиновых деталей. i [c.550]

    Слабый сигнал а-перехода могут обусловить эти сильно разреженные области, но более вероятной причиной реально наблюдавшихся достаточно больших обратимых деформаций (но не в тысячи, как в каучуках, а в десятки процентов) является обратимое химическое течение, при котором возникает после разрыва части цепей в разреженных областях ситуация, похожая на описанные в конце разд. ХП. 2. Разреженные области становятся еще более разреженными, а сгущенные оказываются связанными относительно небольшим числом линейных или слабо разветвленных цепей. Как видим, снова крупные блоки ( глобулы , сгущения) связаны между собой эластичными жгутами, которые, собственно, и определяют а-переход, регистрируемый механически. Переход обратим при условии, что разорванные цепи при снятии нагрузки рекомбинируют. Но и в этом случае обратимость не может считаться полной реком- [c.311]

    Рассмотрение каландрования с учетом вязкоупругих свойств резиновых смесей является с одной стороны обобщением и развитием гидродинамического метода, а с другой — строится на использовании методов контактных задач теории упругости, теории качения и теоретических основ динамических испытаний резины. Приведенное в работе [5] обобщенное выражение для распорного усилия при каландровании, учитывающее гидростатическую Р и де-виаторную Хуу части нормальных напряжений, может быть использовано для инженерных расчетов. Гидростатическое сжатие, возникающее в результате отклонения реального поведения материала от однородной деформации, может быть учтено введением фактора формы. Формфактор может также учесть и такие сложные явления, как эффект конечных деформаций. Иногда этот учет делают введением дополнительного коэффициента нелинейности в реологическом уравнении для эластичного материала. [c.236]

    Теоретическая или предельная прочность резин может быть определена как прочность идеальной по своей структуре эластичной полимерной сетки, способной к таким же большим обратимым деформациям, как и реальные резины (500—1500%). Теоретическая прочность эластомеров впре-дельно-ориентированном состоянии [1, 46, 47], очевидно, не может рассматриваться в качестве теоретической предельной прочности резин, поскольку в этом состоянии, так же как и в застеклованном состоянии, эластомер теряет свою способность к большим деформациям [48, 49].  [c.64]

    Этот аргумент Гатчека нельзя признать решающим для судьбы гипотезы о двухфазном строении студней, и не только потому, что такие величины деформации для студней не характерны (студни разрушаются при значительно меньших относительных деформациях), но и потому, что эластичность студней объясняется согласно этой гипотезе не столько увеличением поверхностной энергии на границе раздела фаз, сколько деформацией пространственного остова, имеющего свойства упругого твердого тела. Несомненно, прирост свободной (поверхностной) энергии при деформации студней происходит, но он не достигает даже в оптимальных условиях тех величин, которые характерны для работы упругой деформации реальных систем. [c.186]

    Нами проведен расчет процесса сжатия эластичных пенопластов на основе иной модели, более полно отражающей свойства реальных пеноиластов, в частности пенополиуретанов. В основу модели положена также конструкция сетчатого типа, состоящая из стержней квадратного сечения. Однако, в отличие от известной модели, стержни, расположенные в двух взаимно перпендикулярных направлениях, могут иметь начальную кривизну (начальный эксцентриситет), причем нить сохраняет свою первоначальную длину. [c.330]

    Предложена модель эластичных открытопористых пенопластов, учитывающая основные особенности реального поведения этих материалов, и дан ее математический расчет. [c.336]

    Ур-ния (1) и (3) удовлетворительно описывают поведение различных материалов (аморфных и кристаллич. полимеров, металлов и др.). Решив ур-ние (1) для разных режимов нагружения, напр, для конкретного е(г) [или a(i)], можно получить выражение для a(i) [или, соответственно, для е(г)]. В частности, для случая постоянного напряжения [0(i) = O при г<0 a(<) = onst при i O] получается сильная (близкая к экспоненциальной) зависимость скоростн деформации (ползучести) от напряжения. Для случая растяжения с постоянной скоростью V [e(i)=0 прн i<0 t(t)=vt при i O] характерна примерно логарифмич. зависимость предела текучести (для стеклообразных полимеров — предела вынужденной эластичности, см. Высокоаластичностъ вынужденная) от скорости растяжения. Сходные зависимости наблюдаются на опыте. Заметные отклонения поведения реального тела от А.— Г. у. появляются иногда из-за наличия в теле нескольких релаксационных механизмов, из-за изменения структуры и свойств материала при больших деформациях и т. д. [c.28]

    Кривые изменения вязкости и эластичности для системы из форполимера на основе простого полиэфира были построены с помощью осциллирующего резонансного эластометра . Правда, по шкале времени эти кривые отчасти отличаются от реального изменения тех же свойств при вспенивании той же системы в промышленных усло- [c.312]

    Для придания высокодеформируемой структуры веществу, которое само по себе способно только к небольшим эластическим деформациям, используются два основных принципа открытой сетки и спиральной молекулы. Ранние теории эластичности каучука основаны либо на одном, либо на другом (а иногда на обоих) принципе. Одно время очень популярной была двухфазная модель, предполагающая, что структура открытой сетки состоит из жесткоупругих компонентов, погруженных в подобную жидкости среду, которая в принципе не вносит вклад в эластические сократительные силы, но заполняет ячейки сетки. Предположение, что каучук содержит два разных компонента, находило подтверждение в различных фактах. Один из них заключался в том, что натуральный каучук не полностью растворим в таких растворителях, как бензин. Одна часть — так называемая золь-фракция — легко переходит в раствор, в то время как другая — гель-фракция — остается нерастворимой или же растворяется очень и очень медленно. Считалось, что эти две части различаются химически, хотя их точное строение не было ясно. В соответствии с этими представлениями казалось реальным предположение, что нерастворимый (и более жесткий) из компонентов структуры является эластичным он способен выдерживать приложенную нагрузку, в то время как растворимый, более жидкий компонент играет роль нейтральной среды, разделяющей элементы более жесткой структуры, но не препятствующий их перемещению. [c.52]


Смотреть страницы где упоминается термин Эластичность реального: [c.271]    [c.242]    [c.310]    [c.90]    [c.31]    [c.90]    [c.26]   
Химия и физика каучука (1947) -- [ c.200 ]




ПОИСК





Смотрите так же термины и статьи:

Эластичность



© 2025 chem21.info Реклама на сайте