Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение внутренней предельная величина

    Выбор того или иного способа изготовления гибких элементов определяется соотношением их геометрических размеров, профилем волн и механическими свойствами металла. Эти факторы характеризуют способность заготовок получать те или иные деформации при их формоизменении, которые при небольших диаметрах гибких элементов обычно являются предельно допустимыми. Изготовление гибких элементов в холодном состоянии требует учета допустимой величины относительного удлинения применяемой стали, а при горячем < гофрировании, расширяющем пределы применения сталей по их пластичности,-.— учета влияния температуры на внутренние изменения в металле. Нанример, горячее гофрирование хромистых и хромоникелевых сталей в определенном интервале температур уменьшает их прочность, в связи с чем возможны разрывы заготовок или местные интенсивные утонения стенок гибкого элемента, что также приводит к браку изделия. [c.109]


    Теплота плавления на моль мономерных звеньев АЯ представляет собой важную внутреннюю термодинамическую характеристику сегментов или звеньев кристаллического полимера. Ее не следует путать с теплотой плавления, или скрытым изменением энтальпии А// , получаемой при калориметрических измерениях. Последняя величина неизбежно обусловливается начальной степенью кристалличности системы. ДЯм всегда меньше АЯм, за исключением предельного случая полностью кристаллического полимера, когда эти две величины будут совпадать. [c.49]

    Следовательно, для сохранения природных экосистем в условиях все возрастающей антропогенной нагрузки, для предотвращения необратимых изменений важно определить величину предельно допустимого воздействия, а также механизмы адаптации и уровни устойчивости к антропогенным воздействиям слагаемых системы. До сих пор ПДК загрязнителей устанавливались зачастую без связи с реальными процессами, происходящими в загрязненном местообитании ввиду отсутствия методов оценки благополучия местообитаний. Предельно допустимая нагрузка это совокупность внешнего и внутреннего воздействия, которая либо не меняет качество среды, либо меняет его в допустимых пределах (Израэль Ю.А., 1984). Устойчивость экосистемы - свойство системы сохранять и поддерживать значение своих параметров и структуры в пространстве и времени, качественно не меняя характер функционирования (принцип Ле Шателье). В отличие от устойчивости, стабильность - способность экосистемы вернуться в прежнюю область устойчивого равновесия после временного воздействия какого-либо фактора. Определяя величину предельно допустимой нагрузки, мы обозначаем порог, начиная с которого принцип Ле Шателье перестаёт действовать, то есть система перестаёт быть устойчивой, теряет стабильность. На примере загрязнения СМС мы предприняли попытку оценить диапазон стабильности исследуемой почвенной системы в случае градиента нагрузки ПАВ. Для этой цели были исследованы параметры ранговых распределений (рис.27). Чем ниже значения параметров Ь и с1, тем благополучнее сообщество. Теоретически, предельному уровню нагрузки соответствует значение параметра крутизны распределения с1 равное единице. Анализируя >Редставленнуго динамику показателей распределения мы видим, что этому значению соответствуют образцы с концентрацией СМС 0,05 и г/г. Эти же концентрации вызвали также наибольшее отклонения от [c.61]

    Полученный после термообработки углеродный остаток обрабатывается при температурах 700-750 °С водяным паром или диоксидом углерода до обгара, величина которого регулирует степень доступности внутреннего объема скелета и определяет, соответственно, тип УМС. Предельные величины обгара, как правило, не превышают 10 %, а сопровождаемые ими изменения в степени доступности объема адсорбирующей пористости представлены в табл. 10.21 для УМС на основе промышленной фенолформальдегидной смолы (ФФС). [c.532]


    Предельная величина дифференциального мольного изменения внутренней энергии. При Г О, 1, поэтому [c.125]

    Капитальный ремонт компрессоров и двигателей внутреннего сгорания производится при достижении предельной величины износа основных деталей (коленчатого вала, цилиндров, поршней, штоков, крейцкопфов), т. е. когда величины зазоров и изменение формы деталей достигли такой величины и характера, при которых не может быть гарантирована безаварийная работа. Капитальный ремонт компрессоров и двигателей внутреннего сгорания с числом оборотов в минуту до 500 производится примерно через каждые 85 ООО— 100 ООО ч работы. [c.161]

    Исследовалось 1[27] изменение усадки при формировании пленок из полиэфирной смолы ПН-1 и влияние на усадку природы поверхности частиц наполнителя. Линейная усадка определялась при помощи микроскопа Мир-12, на предметном столике которого монтировался пластинчатый нагреватель. Связующее заливалось в специальную форму с антиадгезионным покрытием. Смола отверждалась при 80 °С. Температура регулировалась и поддерживалась постоянной при помощи потенциометра и автотрансформатора. На рис. 2.5 и 2.6 приведены данные об изменении усадки и внутренних напряжений при формировании полиэфирных покрытий и пленок. Как видно из рисунков, усадка смолы практически завершается через 30—40 мин формирования в этих условиях. Время достижения предельной усадки совпадает с временем студнеобразования. При охлаждении образцов до 20 °С усадка возрастает примерно в два раза по сравнению с усадкой, наблюдаемой при полимеризации. Внутренние напряжения, возникающие при формировании покрытий, составляют незначительную величину при термическом отверждении и не превышают 0,1 МПа. При охлаждении покрытий в результате замедления релаксационных процессов внутренние напряжения возрастают более чем на порядок. Аналогичные закономерности в изменении внутренних напряжений при нагревании и охлаждении покрытий наблюдались при формировании их из других пленкообразующих 28]. Скорость нарастания и величина внутренних напряжений при этом зависят от разности между температурами испытания и стеклования полимера. Выше температуры стеклования внутренние напряжения практически не возникают [29], ниже температуры стеклования напряжения пропорциональны разности между температурой ис- [c.51]

    Поскольку существование предельного напряжения ползучести не доказано, то пределом ползучести при данной температуре или при заданной продолжительности нагружения называют постоянное напряжение, которое вызывает деформацию заданной величины или определенную скорость деформации. Ускоренные методы определения предела ползучести не учитывают различия физико-хими-ческих и структурных процессов при кратковременном и длительном нагружении. Многие закономерности изменения сопротивления ползучести и обычных механических свойств в зависимости от внутренних и внешних факторов различны, а иногда даже противоположны. В процессе ползучести при повышенных температурах происходит непрерывное изменение структуры. При рекристаллизации (рост зерен) скорость ползучести значительно возрастает, т. е. сопротивление ползучести уменьшается. В отличие от кратковременной прочности, сопротивление ползучести в ряде случаев понижается в результате деформации и потому для некоторых материалов снижение пластичности приводит к повышению сопротивления ползучести. В результате ползучести снижается работоспособность не только разрывных, но и выщелкивающих мембран, хотя и в значительно меньшей степени. Последние через определенное время могут потерять устойчивость и для них кроме критической нагрузки важной характеристикой может являться также критическое время или критическая деформация. [c.161]

    Процесс формирования покрытий из растворов поливинилового спирта и его производных происходит неравномерно по толщине пленки. Как видно из рис. 5.6, изменение влажности пленки не коррелирует с изменением внутренних напряжений. [56]. Равновесная влажность устанавливается через 4—5 ч формирования, а внутренние напряжения начинают обнаруживаться только при высокой концентрации полимера (около 98%) через сутки. Предельные значения внутренних напряжений устанавливаются через 18—20 сут. По предельным значениям внутренних напряжений, вызывающих самопроизвольный отрыв пленки при определенной ее толщине, определялась величина адгезии. Как видно из рис. 5.7, [c.230]

    Данные о кинетике нарастания внутренних напряжений сопоставляли с кинетикой сушки покрытий. Из анализа кривых кинетики сушки покрытий при 80 °С следует, что процесс сушки заканчивается практически через 15—30 мин прогрева в зависимости от концентрации ПАВ, при этом небольшое количество ОС-20 (до 1%) способствует ускорению процесса сушки, а при концентрации, равной 5%, процесс замедляется. Кривые сушки покрытий при 20 °С свидетельствуют о том, что в этих условиях формирования сушка заканчивается через 1,5—2 ч (в зависимости от концентрации ПАВ). Повышение концентрации ОС-20 до 5% также приводит к замедлению процесса сушки. Из сопоставления кинетики сушки и изменения внутренних напряжений следует, что внутренние напряжения при формировании покрытий нарастают до предельного значения после достижения системой равновесного влагосодержания. При термическом отверждении покрытий скорость нарастания внутренних напряжений значительно отстает от скорости удаления влаги. При формировании покрытий при 20 °С максимальная величина внутренних напряжений соответствует равновесному значению влагосодержания. Значительное влияние на величину внутренних напряжений оказывают не только условия формирования, но и концентрация ПАВ, вводимого дополнительно при диспергировании полимера на вальцах. На рис. 3.10 приведена зависимость предельного значения внутренних напряжений и других физико-механических показателей от концентрации ПАВ, полученная для покрытий, сформированных в различных условиях.. Из рисунка видно, что зависимость внутренних напряжений от концентрации ОС-20 немонотонна и для покрытий, сформированных в различных условиях, отмечен максимум при 3%-ном содержании ПАВ. Данные о концентрационной зависимости внутренних напряжений сопоставляли с концентрационной зависимостью прочностных и деформационных характеристик. Концентрационная зависимость внутренних напряжений антибатно коррелирует с изменением прочности. При небольших концентрациях ОС-20 (до 1%) прочность изменяется незначительно, а в условиях отверждения, при 20 и 140 °С она возра- [c.89]


    В предельном случае, когда движения границы системы сопровождаются пренебрежимо малым трением, из рассмотренных выше уравнений исключаются величины у и /. В таком идеальном случае механическая энергия, отдаваемая системой, равна энергии, получаемой окружающей средой, причем внутренние и внешние силы, воздействующие на границу, практически равны. Когда эти силы полностью уравновешены, считают, что система находится в механическом равновесии и отсутствует четко выраженная тенденция к изменению положения границы. В таких условиях бесконечно малое изменение одной из независимых переменных вызовет движение [c.49]

    Изменение потенциальной энергии электрона в такой системе показано на рис. 42. Величины 1) и да,-(п) изображают предельные значения энергии электронов в металлах I и П (предельные уровни Ферми). Разность Ш) — /(п) обусловливает так называемую внутреннюю контактную разность потенциалов на границе С (рис. 41). [c.222]

    Рассмотрим конвективный массо- и теплообмен между каплей и сплошной средой, когда сопротивление переносу сосредоточено в объеме капли. Такую задачу будем называть внутренней. В этом случае изменением концентрации во внешнем потоке можно пренебречь по сравнению с градиентами концентрации внутри капли. Вопрос о том, какая из фаз лимитирует процесс переноса, зависит главным образом от величины коэффициента распределения, определяемого отношением концентрации вещества в сплошной фазе к находящейся с ней в равновесии концентрации дисперсной фазы. Методы определения этих коэффициентов и условий, когда наблюдаются предельные случаи лимитирующего сопротивления дисперсной или сплошной фазы, а также общий случай соизмеримых фазовых сопротивлений изложены в монографии [45]. [c.75]

    Из этих данных видно также, что скорость удаления растворителя независимо от его природы значительно превышает скорость нарастания внутренних напряжений. При удалении из системы 70—80% растворителя в покрытиях возникают сравнительно небольшие внутренние напряжения. Последние достигают предельного значения при наличии в плёнках незначительного количества растворителя (не более 1—3%). Из сравнения рис. 5.16 и 5.17 видно, что при формировании покрытий коэффициент теплопроводности изменяется антибатно внутренним напряжениям, а величина их, как и характер изменения, зависит от природы растворителя. [c.241]

    Уравнения классической термодинамики — уравнения равновесия и фундаментальные уравнения [163] — являются общими, они применимы к любой термодинамической (макроскопической) системе, в частности, к адсорбционной, независимо от ее молекулярной структуры. Такие термодинамические характеристики адсорбции, как константа адсорбционного равновесия, изменения свободной и внутренней энергии, энтропии и теплоемкости, не содержат молекулярных параметров адсорбционной системы в явном виде, однако численные значения термодинамических характеристик адсорбции отражают влияние молекулярных параметров. Явные выражения связи термодинамических характеристик адсорбции с энергией межмолекулярных взаимодействий и со структурными параметрами адсорбента и адсорбированных молекул дает молекулярно-статистическая теория. Эти выражения будут приведены в гл. 5 и 6. Здесь же мы рассмотрим только сами термодинамические характеристики адсорбции, причем только для малых, в основном предельно малых величин адсорбции. [c.65]

    Приведенные данные свидетельствуют о том, что закономерность изменения долговечности в зависимости от величины внутренних напряжений определяется не природой адгезионных связей и условиями эксплуатации покрытий, а величиной предельных внутренних напряжений, на которые влияют условия формирования покрытий. На основании этих данных предложено [37] принимать внутренние напряжения в качестве критерия для оценки долговечности полимерных покрытий. [c.19]

    Кривые изменения прочности пленок и клеевых слоев в зависимости от содержания ФФС в композиции, полученной в оптимальных условиях, имеют характерные максимумы (см. рис. 3.31). При этом максимум прочности пленок при растяжении совпадает с максимумом на кривой изменения удельной вязкости, в то время как максимум прочности клеевых слоев обнаруживается при значительно большем содержании ФФС. Адгезионные свойства покрытий определяли.по величине предельных критических напряжений, вызывающих самопроизвольное отслаивание покрытий от подложки. Из рис. 3.32 видно, что с увеличением содержания ФФС адгезионная прочность возрастает. Однако с повышением содержания ФФС наряду с улучшением адгезионных свойств наблюдается нарастание внутренних напряжений. Увеличение прочности склеивания волокон, полученных при обработке кожи и кожевенных изделий композицией ПФ-30, по сравнению с тем же показателем при использовании композиции ПФ-80 связано с тем, что запас адгезионной прочности при использовании ПФ-30 в 1,6 раза больше, чем при склеивании ПФ-80. [c.129]

    Одним из способов создания тиксотропной структуры является воздействие на систему магнитного поля [100]. При оптимальных условиях магнитное поле играет роль диспергатора, препятствующего агрегации структурных элементов и способствующего формированию однородной пространственной сетки из ассоциированных макромолекул. Было изучено [178] влияние магнитного поля на структурообразование в растворах эпоксидного олигомера, процесс формирования покрытий и их физикомеханические свойства. Объектом исследования являлся эпоксидный олигомер ЭД-6, отверждаемый полиэтиленполиамином и пластифицированный 25% дибутилфталата. Покрытия наносили на стеклянные подложки и подвергали воздействию магнитного поля напряженностью от 32 до 100 кА/м в течение оптимальной продолжительности, равной 30 мин. Внутренние напряжения измеряли поляризационно-оптическим методом в двух взаимно перпендикулярных направлениях — по направлению магнитных линий поля и перпендикулярно им. Влияние магнитного поля на характер структурообразования в жидкой фазе исследовали по изменению реологических свойств олигомеров. Структуру покрытий изучали методом электронной микроскопии путем снятия углеродно-платиновых реплик с поверхности покрытий, предварительно подвергнутых кислородному травлению по оптимальному режиму. На рис. 4.25 приведены данные о кинетике нарастания внутренних напряжений при формировании покрытий яри 80 °С толщиной 400 мкм — исходных и подвергнутых действию магнитного поля различной напряженности. Из данных, приведенных на рисунке, видно что процесс формирования исходных покрытий до предельной максимальной величины напряжений заканчивается через 8—10 ч. Магнитное поле напряженностью 32—48 кА/м не оказывает существенного влияния на величину внутренних напряжений и кинетику их нарастания в этих условиях формирования. С увеличением напряженно- [c.178]

    Это уравнение было применено Гинзбургом и Качальским [41] при рассмотрении влияния пеперемешиваемой пленки раствора на измеряемую величину коэффициента проницаемости.) Однако, поскольку о) в общем случае является функцией концентрации, результат будет зависеть от ориентации мембраны по отношению к растворам. Коэффициенты переноса приведены в табл. 8.5. Следует обратить внимание,. что при вычислении величин ifLp и 1//с условие ДПд О означает, что средние соответственные концентрации с и с одинаковы (какой бы ни была соответственная концентрация на внутренней границе) эти величины удобно обозначить как с. Поскольку коэффициенты переноса могут изменяться с изменением условий эксперимента, величины, представленные в табл. 8.5, следует рассматривать как предельные значения, соответствующие очень малым силам и потокам, [c.464]

    Для ненаполненных резин величина Х Хо связывает характеристические размеры цепей с разницей энергий транс- и гош-конфор-маций и изменениями объема и обычно близка к единице [287, 820, 821, 868, 930, 932]. При введении в каучук усиливающих наполнителей изменение внутренней энергии становится более значительным [154, 286, 310, 311]. В этом случае член Х/Хо включает в себя сумму изменений внутренней энергии системы наполнитель— полимер. В предельно усиленном эластомере эта составляющая изменения внутренней энергии является преобладающей в члене Х/Хо. Экспериментально удобно измерять компоненту внутренней энергии сокращающей силы /в как отнощение /е//. Можно показать [311], что [c.268]

    На всех реостатах обычно указывается полное сопротивление реостата и допустимая сила тока. По этим двум данным и выбирают реостат. При выборе реостата исходят из предельной силы тока, с которой приходится иметь дело при электролизе. Сопротивление, на которое должен быть рассчитан реостат, вы-ЧИСЛ1ЯЮТ, исходя из сопротивления электролитической ванны, которое обычно составляет 10—100 ом. Зная внутреннее сопротивление, можно рассчитать и внешнее сопротивление, которое нужно включить для регулировки электродного потенциала в процессе электролиза. Это сопротивление должно быть таким, чтобы оно допускало изменение потенциала на электродах в предел1ах 0,75—1,00 в. Вычислить величину этого сопротивления можно очень просто, пользуясь для этого законом Ома  [c.164]

    При исследовании процесса формирования покрытий из олиго-эфирмалеинатфталатов, отверждаемых стиролом, было показано [85], что в условиях формирования при 20 °С внутренние напряжения достигают предельного значения через 20—30 сут формирования и не превышают 1,0 МПа для покрытий толщиной от 300 до 1000 мкм (рис. 3.7, а). Значительно быстрее внутренние напряжения достигают предельного значения при отверждении при 80 °С (рис. 3.7, б). Напряжения, возникающие в процессе отверждения полиэфирных покрытий, составляют небольшую величину. Резкое нарастание внутренних напряжений наблюдается при охлаждении покрытий, подвергнутых термическому отверждению. Аналогичные закономерности в изменении внутренних напряжений были обнаружены при формировании покрытий из других олигомерных систем [20,59-61,70,71,75-78,86-89]. [c.135]

    При исследовании кинетики отверждения ненасыщенных олигоэфиров метолом ИК-спектроскопии было установлено [25]. чю 1[роиссс полимеризации в таких системах при 20 С завершается практическп через 4-5 ч с раскрытием 50-60 ,, двойных связей, а при 80 С через 40-60 мин с раскрытием 80-90",, двойных связей. Однако в момент участия в реакции наибольшего числа двойных связей в покрытиях возникают небольшие внутренние напряжения, а прочность пленок в зависимости от условий формирования составляет 20-30",, от ее максимальной предельной величины для сформированных покрытий. Еще более медленно достигает предельного максимального значения модуль упругости. Отсутствие корреляции в изменении свойств и расходовании реакционных групп в процессе отверждения наблюдалось при формировании покрытий из олигомерных систем различного химического состава [60, 121]. Эти данные свидетельствуют о том, что значительная часть функциональных групп, участвующих в образовании пространственной сетки, используется на первой стадии формирования. Однако это не является критерием завершенности процесса формирования покрытий. Дальнейшее отверждение покрытий, связанное с последующим значительньгм нарастанием их физико-механических характеристик, происходит с использованием значительно меньшего числа функциональных групп. [c.129]

    ЭВОЛЮЦИИ. Они, в свою очередь, определяют все возможные эволюционные ряды на всех количественных уровнях мироздания. Преимущество уравнения (21) по сравнению с прежними уравнениями (14) и (15) заключается в том, что на практике обычно легче находится изменение некоторой величиньГ, чем ее абсолютное значение, ибо тогда данную величину можно отсчитывать уже от любого условного, а не абсолютного нуля отсчета. Например, в термодинамике изменения внутренней энергии, энтропии, температуры и других характеристик определяются значительно проще, чем абсолютные значения этих величин, причем существуют различные условные нули их отсчета. Тем не менее и в данном случае трудность проблемы заключается в том, что непосредственно извлечь законы эволюции из уравнения (21) практически невозможно вследствие предельной общности последнего. Кроме того, оно, как и уравнения (14) и (15), в известном смысле условно, ибо в обобщенной форме выражает лишь принципиальную сторону имеющихся связей (об этом уже говорилось в гл. И). [c.56]

    Величина е представляет собой отношение годовых затрат на поверхность теплообмена к затратам на нагнетатели и их привод. Из (8.7) и (8.8) следует, что оптимальное отношение этих затрат не зависит от экономических показателей, а определяется лишь условиями теплообмена схемой движения потоков, геометрией поверхности теплообмена, отношением теплофизических свойств потоков. Укажем интервал изменения величины для случая / ст = 0. При продольном обтекании каналов с развитым турбулентным режимом течения потоков (Лг = 0,8, а = 0,2) из (8.7) и (8.8) найдем нижнюю границу е°" = 2,5. При поперечном обтекании пучка шахматной компоновки и одностороннем наружном теплоносителе с = 0,6 и ан=0,27 получим gonT 3 55 Ддя коридорной компоновки при одностороннем наружном обтекании с Пн = 0,65 и Ян=0,2 имеем в°" = 3,3. При двухстороннем поперечном обтекании пучка нижняя граница, соответствующая ст = 0, для расположена между двумя предельными случаями односторонним внутренним обтеканием с е°" = 2,5 и односторонним наружным обтеканием с е " = 3,55. Верхняя граница существенно зависит от термического сопротивления стенки. Например, для водяных экономайзеров возможен случай Л=1, что при продольном обтекании соответствует е°" = 6. [c.118]

    Нужно подчеркнуть, что хотя при использовании внутреннего стандарта нет необходимости вводить поправки на восприимчивость, однако при этом нельзя исключить специфические взаимодействия между растворителем и эталонным веществом. Как предельный случай рассмотрим, например, хлороформ, используемый в качестве внутреннего стандарта в растворе бензола-с1б. В этом случае резонансный сигнал циклогексана (с концентрацией 20 % об.) оказывается при —4,96 м. д. При использовании I4 в качестве растворителя и при том же внутреннем стандарте химический сдвиг циклогексана равен —5,80 м. д. Различие в 0,84 м. д. между двумя измерениями объясняется тем, что хлороформ образует в бензоле ассоциаты, в которых протон хлороформа специфически экранирован (см. разд. 1.7 гл. IV). Если мы попытаемся определить б-величину циклогексана на основе этих измерений при учете известной б-величины хлороформа, то мы получим значения 2,31(7,27—4,96) или 1,47(7,27— 5,80) м. д. Таким образом, только в случае растворов в ССЦ получаются приемлемые результаты (см. табл. П. 1) Этот пример показывает, что измерения, проводимые в различных растворителях или с использованием различных стандартов, приводят к одним и тем же результатам только в том случае, когда отсутствуют специфические взаимодействия между растворителем и стандартом или измеряемым веществом. Следует избегать использования тех комбинаций растворитель — стандарт, для которых известны или ожидаются подобные специфические взаимодействия- Впрочем, эффекты ассоциации могут быть и полезными, поскольку взаимодействия этого типа часто приводят к изменениям в относительных химических сдвигах, что влияет на вид спектра. [c.67]

    Физический смысл слагаемых, заключенных в квадратные скобки, состоит в том, что первое характеризует внутреннюю устойчивость зародыша, второе — среды (метастабильной фазы). При этом величина второго слагаемого тем больше, чем большие изменения в состоянии метастабильной фазы вызывает рост новой фазы. Отсюда следует, что в зависимости от природы исходной фазы и условий, в которых протекает процесс, выражение (43) может быть величиной как положител1>ной, так и отрицательной. В свою очередь это будет влиять на характер устойчивости критического зародыша при (d Af)r=rкp>0 наблюдается устойчивое, а для (d2Af) =rкp<0 — неустойчивое равновесие зародыша со средой. Другими словами, на основании выражения (42) нельзя однозначно утверждать, что работа образования зародыша алмаза в изохорно- и изотермических условиях всегда положительная и возрастает с увеличением его размера. Лишь в предельном случае, для очень больших равновесных систем, когда можно пренебречь изменением давления и химических потенциалов, выражение (41) приближается к формуле Гиббса, описывающей работу образования критического зародыша. [c.341]

    Натекание, определенное таким образом, учитывает не только натекание в печь атмосферного воздуха, но и внутреннее газовыделение. Определить главную причину натекания можно, изучив характер изменения давления в печи при замере натекания в функции времени [Л. 1]. Если при перекрытом затЬоре, соединяющем печь с насосом, давление в печи постепенно увеличивается, причем со временем величина прироста давления падает, приближаясь к нулю (рис. 1-1, кривая /), то это значит, что внутри вакуумного объема имеются источники газо-выделения, обладающие упругостью пара, соответствующей верхнему пределу установившегося давления. Если давление в печи возрастает пропорционально времени (кривая 2), то в печь натекает воздух из атмосферы. Если при откачке в печи устанавливается давление много выше, чем предельный вакуум откачивающего насоса, а продолжение откачки не приводит к улучшению вакуума в печи, причиной этому может служить либо большое натекание, либо неисправность насоса. Установить причину можно следующим образом надо пере- [c.8]

    Теоретическая прочность на разрыв стеклянного волокна изменяется в пределах от 70 ООО до 1 ООО ООО кГ/см (в зависимости от метода расчета). Согласно лабораторным исследованиям эта величина колеблется в пределах 35 ООО—42 ООО кГ/см . Что касается промышленных образцов стекловолокна, то его прочность па разрыв составляет 14 ООО кГ/см , а в процессе носледуюш,ен обработки эта величина может снизиться до 7000 кГ/см . Испытания труб из стеклопластиков па разрыв показывают, что стеклянное волокно постоянно сохраняет величину в 7000 кПсм . Стеклянное армпрованне в виде стекловолокна, стекложгута или стеклоткани (вес которого составляет 60—80% от обш,его веса трубы) несет основную часть нагрузки на изделие. Повреждение армирования может значительно уменьшить прочность трубы, поэтому в большинстве труб для их защиты применяется внутренний вкладыш из полихлорвиниловой или эпоксидной смолы. Труба рассчитана на работу в течение 15—20 лет, поэтому при определении рабочего давления принимается четырехкратный запас по пределу текучести. Для таких труб существует предельно допустимая температура, равная 120° С (в некоторых случаях, а именно для труб низкого давления, допускается даже 140° С). Этот температурный предел намного ниже той температуры, при которой начинаются заметные изменения в свойствах смолы. [c.86]


Смотреть страницы где упоминается термин Изменение внутренней предельная величина: [c.89]    [c.41]    [c.27]    [c.42]    [c.42]    [c.349]    [c.72]    [c.416]    [c.306]    [c.322]    [c.193]    [c.23]    [c.600]    [c.208]    [c.51]    [c.179]    [c.130]   
Адсорбция газов и паров на однородных поверхностях (1975) -- [ c.125 ]




ПОИСК







© 2024 chem21.info Реклама на сайте