Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры пластические свойства

    В зависимости от строения основной цепи и боковых групп, замещающих водородные атомы, полимеры имеют различную полярность и разную величину сил внутримолекулярного и межмолекулярного сцепления и, следовательно, неодинаковую подвижность макромолекул. От полярности и гибкости макромолекул зависят упругие, эластические и пластические свойства полимера, твердость и жесткость материала, температура перехода от упругого к эластическому и пластическому состоянию. [c.20]


    Для каждого полимера в определенных границах температур принципиально возможны все три указанных состояния. Например, натуральный каучук при обычной температуре может обратимо растягиваться в 5—6 и более раз. При этой температуре каучук находится в высокоэластичном состоянии. Если же каучук охладить до температуры —73 °С, он становится твердым и хрупким, как стекло (стеклообразное состояние). При нагревании каучука до 180 °С он начинает обнаруживать пластические свойства и способность течь (вязко-текучее состояние). [c.250]

    Пластические свойства появляются, как мы видели, при нагревании до Т > Т и обусловлены последовательным перемещением цепей. Движение цепи как целого связано с большими затратами энергии на одновременное преодоление большого числа межмолекулярных связей. Поэтому течение полимеров следует представлять себе как последовательное перемещение отдельных звеньев цепи. Для этого необходимо локальное выпрямление цепей и, таким образом, пластичность связана с гибкостью цепей и с эластическими их свойствами. Факторы, вызывающие увеличение жесткости цепей (мостичные связи, полярные группы), уменьшают или полностью исключают пластичность. Так, пространственные, особенно сшитые, полимеры даже при редкой сетке теряют способность к необратимым деформациям, а следовательно, не могут переходить в вязкотекучее состояние. [c.310]

    Действительно, если химические связи окажутся при механическом воздействии разорванными, то они уже не восстановятся, поскольку в местах разрыва изменится состав в результате взаимодействия с растворителем. Студни, образованные полимерами, не обладают пластическими свойствами, но упругие и эластические свойства их сходны со свойствами гелей и определяются прочностью и гибкостью макромолекулярной сетки, а также твердообразностью ориентированных слоев молекул растворителя. Особенно характерно это для полярных макромолекул в водной среде. [c.302]

    Аморфные полимеры могут быть стеклообразными, жесткими или эластичными в зависимости от температуры. При низких температурах аморфные полимеры находятся в стеклообразном состоянии, которое сходно с переохлажденной жидкостью. Повышение температуры приводит к переходу из стеклообразного состояния в эластичное при температуре стеклования. При этом наблюдается резкое изменение в физических свойствах, однако изменение плотности происходит непрерывно. Ниже температуры стеклования даже аморфные полимеры приобретают твердость и хрупкость. Атомы и небольшие группы атомов колеблются около среднего положения, но части молекул не скользят одна над другой. Выше температуры стеклования аморфный полимер становится эластичным, а кристаллический — более подвижным и менее хрупким. В аморфных полимерах большие части молекул начинают скользить одна над другой и появляются характерные пластические свойства. Как для аморфных, так и для кристаллических полимеров скорость изменения плотности с температурой гораздо выше температуры стеклования Tg из-за усиления молекулярного движения. Переход от стеклообразного к эластичному состоянию обычно происходит в интервале температур около 50° С, но эта температурная область зависит от типа полимера. Если между поперечными связями и центрами клубков имеются довольно длинные участки молекулярных цепей, которые находятся в броуновском движении, то полимер проявляет эластичные свойства. [c.595]


    Пластикация — процесс перемешивания и расплавления полимера в ходе Переработки для повышения (или придания) пластических свойств. [c.106]

    Различные виды сырья неодинаковы по своим пластическим свойствам в условиях обработки на вальцовом гидролизере. Так, уже ранее было замечено [25], что материалы, содержащие значительное количество ГМЦ, гораздо более пластичны, чем хвойная древесина или ее целлолигнин. Например, стержни початков кукурузы или шелуха овса обрабатываются на вальцовом гидролизере при модуле серной кислоты по моногидрату 0,10—0,15, а древесные опилки — при модуле 0,3. Этот факт может быть объяснен отчасти тем, что ГМЦ набухают в 4,3 раза больше, чем целлюлоза [48], ио главным образом — более низкой молекулярной массой ГМЦ, поскольку известно, что температура текучести полимеров снижается с уменьшением их молекулярной массы [4]. [c.206]

    Фенолоформальдегидные смолы делятся на две группы термопластичные (новолачные) и термореактивные (резольные). К первой группе относятся смолы, которые после термообработки остаются пластичными и растворимыми в полярных растворителях (спирты, кетоны). Смолы второй группы при нагревании теряют пластические свойства и превращаются в твердый полимер, практически не растворимый в обычных растворителях. Эти особенности связаны с различиями в химическом строении рассматриваемых продуктов. [c.182]

    Пластификация полимеров обычно рассматривается как технологический прием повышения эластических и пластических свойств материала, т. е. уменьшения его хрупкости в результате введения специально подобранных пизкомолекулярных веш,еств — пластификаторов. При этом, как известно, смещаются в сторону более низких температур точки переходов полимера из одного физического состояния в другое, либо расширяется температурный интервал его высокоэластического состояния [1]. В первом случае имеет место ослабление межмолекулярных связей в результате блокирования молекулами пластификатора активных групп полимерных ценей, ответственных за эти связи, во втором случае имеет места блокирование активных групп звеньев полимерной цепочки, ответственных за придание жесткости цепям в целом. Поэтому такая пластификация повышает гибкость полимерных макромолекул, не изменяя точки перехода из высокоэластического в вязкотекучее состояние. [c.319]

    В 20-х годах нашего века возникла новая отрасль химических знаний — химия высокомолекулярных веш,еств, называемых иначе полимерами. Особое значение приобрели синтетические полимеры. Пластические массы (пластмассы), синтетические каучуки и волокна широко применяют для изготовления самой разнообразной продукции. Синтетические полимерные материалы совмещают в себе по несколько ценных свойств, совокупность которых не встречается ни у природных веш,еств, ни у металлических сплавов, ни у стекла и пр. Поэтому полимеры используют там, где с помощью других давно известных материалов нельзя решить ту или иную техническую задачу, например, совместить в одном изделии высокую прочность, легкость, прозрачность и диэлектрические свойства. [c.258]

    Низкомолекулярные полимеры являются жидкими или мазеобразными веществами. Высокомолекулярные полимеры — твердые вещества, в некоторых случаях обладающие характерными эластическими к пластическими свойствами. [c.416]

    Под пластификацией вообще понимают повышение подвижности структурных элементов полимерного тела в результате введения специально подобранных низкомолекулярных веществ — пластификаторов, хорошо растворяющих полимер. При молекулярной пластификации молекулы пластификатора равномерно распределяются среди молекул полимера и происходит, по существу, распад всех надмолекулярных образований (в том числе и пачек) и возникает твердый раствор полимера с пониженной температурой стеклования и высокоразвитыми вязко-текучими, т. е. пластическими, свойствами. [c.378]

    Для улучшения пластичности твердых парафинов их применяют в виде композиций с нефтяными церезинами и восканш, которые имеют повышенное содержание кристаллизующихся углеводородов изомерного и циклического строения, являщихся носителями пластических свойств, а также с канифолью и различными полимерами (пшшпропилен, бутил-каучук, сополимер этилена с винилацетатом и др.). Типичными примерами ВОСКОВ нефтяного происхождения являются защитные воски ЗВ-1, ЗВ-1у [I], получаемые на основе фильтрата обезмасливания тяжелого дистиллятного сырья, а также воски "Омск-1" и "Оаск-7" [c.61]

    В результате полимеризации могут получаться высокомолекулярные вещества, обладающие пластическими свойствами (синтетические каучуки, полиизобутилен или оппанол, тиокол и т. д.), которые объединяют под названием эластомеров, или же твердые (растворимые или нерастворимые, плавкие или неплавкие) полимеры, известные под названием пластомеров. К последним относятся так называемые пластмассы (целлулоид, бакелиты, глифтали, коросил, полистиролы, акрилоиды и т. д.). Некоторые считают, что термопластичные полимеры—акрилаты и метакрилаты, полистиролы, поливиниловые эфиры и т. д.—занимают промежуточное место, и называют их эластопластиками [3]. [c.587]


    Предыдуш,ие значения удельной ударной вязкости присуш,и хрупким материалам, если < 40 кДж/м . Материалы, имею-ш,ие йп в пределах 50—90 кДж/м , обычно оказываются хрупкими, если образцы надрезаны тупым инструментом. Из полимеров, не разрушающихся при испытании по Шарнп на ненадрезанных образцах, некоторые подвергаются хрупкому разрушению, в случае если они надрезаны острым инструментом, в то время как другие даже в таком случае сохраняют пластические свойства. Поэтому Винсент [96], а также Бакнелл и др. [c.271]

    Как и парафины, полиэтилен при на1рева нии на воздухе подвергается медленному окислению (старению). Поглощение первых доз кислорода вызывает еиижеиие молекулярного веса полимера и температуры его размягчения. В макромолекулах появляются альдегидные и кетонные группы. При нагревании частично окисленного полиэтилена молекулярный вес ого увеличивается в результате соединения макромолекул кислородными мостиками. Таким образом, процесс старения полиэтилена сопровождается изменением не только химического состава макромолекул, ио и их структуры. В процессе старения полиэтилен приобретает сетчатую структуру и потому становится нерастворимым. При этом происходит также потеря эластических и пластических свойств полиэтилена. Пленка становится жесткой и хрупкой. Солнечный свет илп ультрафиолетовое облучение епо-еобствуют ускорению процесса окисления полиэтилена. [c.211]

    Поливинилкарбазол представляет собой слегка желтоватый, прозрачный стекловидный полимер аморфной структуры. Вследствие линейности макромолекул полимер имеет пластические свойства (при температуре выше 200"). Коэффициент преломления полимера довольно высок и составляет 1,69—1,7, что на 15— 20% превышает величину показателя преломления полиметилмет-акрилата и полистирола. Поливинилкарбазол отличается высокой -твердостью, сохраняюш,ейся и при 90 . Механические свойства полимера остаются почти неизменными даже при длительном нагревании (170—-180 ). В отличие от большинства линейных по- шмеров поливинилкарбазол обладает низкой текучестью при температурах ниже температуры его размягчения. Даже длительное 1агревание (170 ) полимера, находящегося под нагрузкой, не вызывает заметной его деформации. [c.391]

    Предельные состояния обычно изображаются с помощью некоторых поверхностей в пространстве главных напряжений. При монотонном изменении свойств полимера под действием внешнега воздействия происходит соответствующее мбнотонное изменение предельных поверхностей. Для получения обобщенного критерия предельного состояния чаще всего используют двойственную модель твердого деформируемого тела [11.8] с целью аналитического расчета свойств хрупкости и вынужденной эластичности проявляющихся при деформировании реальных твердых полимеров. В двойственной модели деформация представляется в виде суммы двух составляющих, обусловленных хрупкими и пластическими свойствами полимера. Таким образом, вводятся два параллельных реологических элемента, описывающих отдельно хрупкие и пластические свойства полимера. Иногда в реологическую модель включают элемент разрушения для того, чтобы связать процесс деформирования с процессом разрыва связей, что особенно существенно для полимеров. [c.285]

    При рассмотрении модели, состоящей из двух реологических элементов, занимающих определенную часть в сечении 5 образца, на долю каждой из них приходится определенная площадь 5хр — для хрупкого и 5вяз — для вязкого элемента (5 = 5 р + + 5вяз)- Вводится параметр qк= вяз S, характеризующий соотношение между хрупкими и пластическими свойствами полимера. [c.285]

    Высокоэластическая деформация, вынужденно-эластическая деформация стеклообразных полимеров, пластическая деформация кристаллических полимеров приводят к развертыванию молекулярных клубков и ориентации макромолекул в нанравлении действия силы. Ориентированные эластомеры можно охладить до Т<Тс и таким образом зафиксировать состояние ориентации макромолекул. Все ориентированные полимеры имеют одно общее свойство их прочность и модуль упругости при растяжении в направлении ориентации много больше, чем у неориентированного полимера, а гфочность и модуль при деформации в перпендикулярном направлении ме]Н)Ше, чем у исходного пеорисптиронанпого полимера. [c.191]

    Студни похожи по свойствам на гели, однако отличаются от них по строению тем, что сплошная пространственная сетка имеет в сечении молекулярные размеры и образована не вандерваальсовыми, а химическими или водородными связями. Таким образом, студни можно рассматривать как гомогенные системы, в отличие от гетерогенных гелей. Иная природа связей определяет и структурно-механические свойства студни, в отличие от гелей, не тик-сотропны. Действительно, если химические связи окажутся при механическом воздействии разорванными, то они уже не восстановятся, поскольку в местах разрыва изменится состав в результате взаимодействия с растворителем. Студни, образованные полимерами, не обладают пластическими свойствами, но по упругости и эластичности они сходны с гелями и влияние различных факторов на эти свойства аналогично рассмотренному выше для ненабухших полимеров и гелей. [c.314]

    Строение цепи сказывается на свойствах полимеров, и наиболее устойчивые и хорошие свойства имеют полимеры с синдиотакти-ческим или стереорегулярным строением цепи. При наличии двух замещенных строение цепи усложняется еще больше. Формы и пространственное расположение цепей (укладка) при образовании макромолекул также весьма сложны и многообразны. Возможность изменения способа (распрямление цепи) и определяет эластические и пластические свойства полимеров. [c.496]

    Весьма детально изучены вопросы стабилизации суспензий добавками водорастворимых полимеров [58-60] - полиэтиленокси-да и эфиров целлюлозы, частично гидролизованного полиакриламида. Эффект упрочения суспензий в данном случае связан с образованием очень объемных адсорбционных слоев, препятствующих сближению частиц. При этом длинные молекулы полимеров способны адсорбироваться сразу на нескольких частицах, образуя прочные агрегаты. Увеличение вязкости дисперсионной среды и возникновение у нее пластических свойств при добавке полимера приводят к упрочению разделяющих частицы пленок среды (вязкостная составляющая расклинивающего давления). Поэтому при очень малых концентрациях полимера может наблюдаться флоку-ляция суспензий - образованные за счет адсорбции полимера агрегаты теряют седиментационную устойчивость из-за малой вязкости дисперсионной среды. [c.45]

    Пластификаторы, относящиеся к первой группе и часто называемые эласти-фикаторамн, иовыитают эластичность полимера, не меняя существенно пластических свойств. Иными словами, температура стеклования полимера снижается. [c.262]

    Пластические свойства, придаваемые битуму серой, быстро теряются, и происходит превращение пластического материала в кристаллический. Добавление к битуму вместо элементарной серы полиметилентетрасуль-фида сопровождается также возрастанием пенетрации и понижением температуры хрупкости (по Фраасу). Однако пластические свойства полимера сохраняются значительно дольше. Недостатком простых органических полисульфидов является их низкая устойчивость к действию высоких температур, имеющих место при обычном использовании битумов. Себестоимость осерненного битума оказалась высокой, так как расход серы составил 20—25%- Поэтому производство осерненного битума широко не распространилось. При обработке сырья серой выделяется значительное количество сероводорода и летучих сернистых соединений. В готовом битуме остается лишь небольшое количество серы. По-видимому, сера, отнимая водород, превращает простые связи в двойные, а затем образовавшиеся ненасыщенные соединения полимеризуются. [c.156]

    Полимер по своим свойствам очень похож на обычныР каучук 8, 41, 42]. Его можно назвать неорганическим каучуком. Полимер набухает в бензоле, но не растворяется. Растянутые плепкидают диаграмму типичного во локна [37] Этот полимер интересен в том отношении что он является единственным известным примером стабильного неорганического полимерного соединения с пластическими свойствами, которые встречаются обычно у органических полимеров. [c.318]

    Оксазолы нашли применение [4] в фотографии, в качестве флуоресцентных отбеливателей (для хлопка и полиэфиров), высокотемпературных антиоксидантов (2,5-дифенилоксазол) и добавок к детергентам для сохранения блеска металлов (2-меркаптооксазол). Получены полимеры, а также сополимеры 2-вииил- и 2-изопропен-илоксазолов. Некоторые арилоксазолы применяют в качестве жидких сцинтилляторов. По пластическим свойствам они лучше, чем терфенилы. [c.459]

    В настоящее время практически нет ни одной области народного хозяйства, где бы не использовались пластмассы. ПластмаЫ сами называют такие материалы, которые содержат в качестве основного компонента полимер, при переработке в изделия прояэ-ляют пластические свойства, а в обычных условиях представляк собой твердые или упругие вещества. Полимерами являются вещества, моле< улы которых состоят из многократно повторяющий -ся звеньев одинакового химического состава и строения и представляют собой длинные цепи. [c.5]

    Свойства полиоксиэтилена. Полиоксиэтилен приобретает характерные для высокомолекулярных полимеров пластические и реологические свойства в области молекулярных масс порядка нескольких сотен тысяч. Именно к этим полимерам применимо понятие полиокс , тогда как термин полиоксиэтиленг.ликоль относится к поли- <ерам с молекулярной массой не выше 60 тыс. и гарантированной бифупкциональностью по гидроксильным группам. В химическом [c.265]

    Пластические свойства полиокса привлекли значительный интерес сразу после первой публикации, несмотря на то, что трудно было ожидать серьезных прямых применений полимера в связи с его низкой температурой плавления и высокой растворимостью. Полиокс характеризуется высоким удлинением, гибкостью и тенденцией к ориентацип под нагрузкой. Ниже приведены основные прочностные характеристики высокомолекулярного полиоксиэтилена на примере 1Г5Л-301 [56. 133]  [c.271]

    При увеличении количества введенного в полимер пластификатора наблюдается совместное снижение и После достижения определенной концентрации пластификатора Т г начинает уменьшаться медленнее, чем Г ек, что приводит к сужению интервала высокоэластической деформации. Когда Г ек— ст упадет до нуля, а Ттек до комнатной температуры, получится продукт, обладающий вязким течением при обыкновенной температуре. Например, пленки эфиров целлюлозы, содержащие до 40% трикрезилфосфата, отличаются хорошей эластичностью, но при дальнейшем увеличении количества пластификатора все отчетливее вырисовываются пластические свойства (остаточная деформация). [c.511]

    В промышленной пракЛке синтетические смолы (пластмассы) подразделяют иа термопластичные и термореактивные. Термопластичные— твердые в о ычиых условиях — могут быть повторно размягчены и расплавлены при нагревании под атмосферным или избыточным давлением (этиленовые полимеры, полиакриловые эфиры и др.). Термореактивные— пластичны в обычных условиях, ио при нагревании сначала плавятся, а затем переходят в твердые и неплавкие. Процесс этот необратим и пластические свойства восстановить нельзя (фенол-формаль-дегидные смолы, мочевино-формальдегидные смолы и др.). [c.91]

    Пласгификаторы по Р.С. Барштейну (I, с.5) это ор1анические химические соедииения, которые применяются для придания полимерам новых свойств - эластичности, морозостойкости, снижения температуры переработки. Пластификаторы, применяемые для приготовления пластических масс должны  [c.98]

    Дополнительные сведения, подтверждающие важное значение мостовых связей, мы находим в описании результатов экспериментов по определению фильтруемости сфлокулироваиных осадков и изучению влияния интенсивности перемешивания воды на флокуляцию. В опытах по фильтрации [190, 191] показано, что по мере увеличения дозы ВМФ (синтетических и природных, катионных и анионных) удельное сопротивление осадков уменьшается, а скорость фильтрации соответственно возрастает (пропорционально дозе ВМФ). Причина состоит в образовании пространственной сетки и гидрофобизации поверхности частиц под действием адсорбировавшихся полимеров. Под давлением флокулы проявляют пластические свойства. [c.304]

    При рассмотрении модели, состоящей из двух реологических элементов, занимающих определенную долю поперечного сечения образца 5, на долю каждого из них отводится определенная площадь 5хр —для хрупкого и вязк — для вязкого элемента (5=5хр4-5вязк). Вводится параметр дк=5вязк/я, характеризующий соотношение между хрупкими и пластическими свойствами полимера. Согласно одной из моделей (энергетической), образование микротрещины в объеме и на поверхности полимера начинается как только внутренняя энергия, обусловленная упругими деформациями, достигает некоторого критического значения, а течение полимера начинается, когда внутренняя энергия, обусловленная высокоэластическими деформациями, достигает другого критического значения. В рассматриваемой модели постулируется, что сумма этих двух составляющих внутренней энергии является постоянной материала. [c.64]

    С целью улучшения кислородного баланса с сохранением нужных связующих свойств американской фирмой Аэроджет Дженерал , разрабатывающей твердые топлива, получены связугощие вещества на основе нитрополимеров, при введении 15—20% которых сохраняется благоприятный кислородный баланс и достигаючся нужные пластические свойства заряда. В качестве связки, содерн ащей активный кислород, упоминается нитрополиуретан. Помимо полимеров, в некоторые составы добавляются нитропроизводные и нитронластпфикаторы. [c.53]

    В зависимости от физико-механических свойств полимеров применяются те или иные методы их переработки в готовые изделия прессование, литье или экструзия. Прессование порошкообразных полимеров проводится при температурах, где проявляются пластические свойства полимеров. Этот метод удобен для небольших изделий, его приходится применять также в тех случаях, когда полимер не плавится. Если полимер плавится и образует расплав приемлемой вязкости, то применяется метод литья расплава полимера под давлением в соответствующие формы. Это наиболее удобный и производительный метод переработки. Далее, применяется метод экструзии, т. е. продавливания материала через матрицу с образованием нитей, пленок и прочих изделий. В этом случае полимерный материал, нагретый до нужной температуры, при которой он приобретает пластичные свойства, под большим давлением с иопользованием шнека выдавливается в нужную форму или продавливается через нужные отве рстия или щели. Таким образом готовятся нити, пленки, трубы и пр. Экструзия может применяться для полимеров, которые нельзя переработать методом литья. [c.59]

    Методы переработки и применение. Политетрафторэтилен перерабатывается в изделия более сложно, чем другие галоидсодержащие полимеры. Для прессования из порошка тефлона, в который для уменьшения усадки в некоторых случаях добавляют мелкодисперсный углерод [1268], делают таблетки по форме изделия при 20° и Р = 140—700 кПсм [ 1252] и нагревают их в печи или жидкостной ванне до появления пластических свойств. Извлеченную заготовку нагревают при 327—500° до спекания и охлаждают под давлением 3,5—700 кГ/см в прессформе, окончательно оформляющей изделие [1269]. При быстром охлаждении структура материала изделий становится аморфной она отличается более высоким сопротивлением разрыву и удлинением [1270]. Для облегчения формования посошок полимера иногда смешивается с органической смазкой [1271, 1278], стойкой при повышенной температуре. [c.310]

    Возможна также классификация полимеров, основанная на поведении их в эксплуатационных условиях, отношении к термической обработке и нр. Так, если в широком интервале температур полимеры характеризуются свойствами эластического каучукоподобного тела, их называют эластомерами, или каучуками. Если же в указанных условиях полигшры ведут себя как жесткие твердые тела, их называют пластомерами, пластическими лшссами или полимерными стеклами. [c.368]

    Смит и Ван-Клив [280] показали, что пластические свойства полимеров окиси этилена определяются величиной молекулярного веса, высокой степенью кристалличности и подвижностью цепей. Образцы из полиэтиленоксида могут быть вытянуты на холоду с образованием шейки . Степень кристалличности полиэтиленоксида достигает 95%. Кристаллы относятся к моноклинной системе. Полимер обладает способностью образовывать сферолиты его температура стеклования ---50°, т. пл. 66°, плотность составляет — 1,5—1,26. [c.60]


Библиография для Полимеры пластические свойства: [c.279]   
Смотреть страницы где упоминается термин Полимеры пластические свойства: [c.60]    [c.217]    [c.813]    [c.311]    [c.39]    [c.64]    [c.354]   
Общая технология синтетических каучуков Издание 3 (1955) -- [ c.252 ]




ПОИСК





Смотрите так же термины и статьи:

Пластическая



© 2024 chem21.info Реклама на сайте