Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность и выбор типа реактора

    Ряд переменных определяет решение общей задачи оптимизации эксплуатационных характеристик реактора при дезактивации. Эти переменные включают состав катализатора и его распределение, тип реактора и его размер, температуру контактирования и конверсию, ограничения, по селективности. Выбор типа реактора уже обсуждался в разделе 8.1, так что дальнейшее обсуждение связано с влиянием других переменных. [c.192]


    Существует много способов регулирования скоростей основных и побочных реакций. Например, с этой целью можно использовать селективный катализатор, который будет ускорять только главный процесс. Кроме того, соответствующим выбором типа реактора часто можно воздействовать на ход реакций в системе, о чем уже упоминалось в разделе УП1. Так, если в, системе проходят две параллельные реакции по схеме [c.372]

    Выбор типа реактора по селективности и способу введения реагентов [c.179]

    Большое влияние выбор типа реактора оказывает на селективность процесса, качество получаемого продукта, что объясняется прежде всего разным характером распределения концентраций реагентов и продуктов в реакционном объеме аппарата. Это особенно важно учитывать при проведении последовательных и параллельных реакций разного порядка. Например, при реакции полимеризации от типа реактора может в большой степени зависеть распределение молекулярных масс образующихся полимеров. Объясняется это тем, что реакция имеет вероятностный многостадийный характер (активация, образование цепи, ее рост, обрыв) и, следовательно, на качество продукта (распределение по молекулярным массам) основное влияние оказывают время пребывания и изменение концентрации в реакционном объеме. Эти факторы изменяются по-разному в реакторах различного типа. Например, в реакторе вытеснения трудно обеспечить высокое качество продукта, так как большой диапазон изменения времени пребывания по сечению аппарата при наличии высокой вязкости среды создает резкую разницу в степени полимеризации у стенки аппарата и по его оси. Поэтому наиболее распространенным типом реактора для таких процессов является аппарат смешения или каскад из таких аппаратов. [c.497]

    Выбор типа аппарата. Получив соотношения между выходом целевого продукта и селективностью, используем формулы (УП1,99), (УП1,100) и (УП1,101) для выбора типа реактора. [c.316]

    При выборе типа реактора теоретический режим, выявленный в процессе исследования микрокинетики, является своего рода эталоном, который показывает характер необходимого изменения режима в реакторе с глубиной превращения. Выбирая тип реактора, необходимо знать область протекания процесса (диффузионная или кинетическая). Так, внешнедиффузионные процессы осуществляются в адиабатических реакторах с одним небольшим по высоте слоем катализатора. Далее нужно оценить степень внутридиффузионного торможения процесса на зерне. Если протекают одна простая реакция или несколько параллельных реакций, внутридиффузионное торможение только снижает наблюдаемую активность катализатора. Однако, если полезный продукт частично претерпевает в реакторе какие-то изменения (например, при последовательной схеме реакций с полезным промежуточным продуктом), внутридиффузионное торможение может значительно уменьшить селективность процесса. Чтобы избежать этого, приходится значительно уменьшать размер зерна катализатора, что влияет на выбор типа аппарата. [c.420]


    Когда лучший по селективности тип реакционного узла оказывается невыгодным по удельной производительности, а также из-за дополнительных затрат, связанных с усложнением его конструкции или обслуживания, вопрос о выборе типа реактора нужно решать с привлечением экономических критериев оптимизации. [c.415]

    Разработка высокоэффективных процессов. Одним из основных принципов, позволяющих наиболее полно использовать сырье для получения целевых продуктов, является повышение селективности процессов. Селективность процесса зависит прежде всего от катализатора, а также от условий проведения процесса температуры, давления, концентрации реагентов, растворителя (в случае жидкофазных процессов), времени пребывания реагентов в зоне реакции и других параметров, а также типа реактора. При этом выбор оптимальных параметров позволяет достигнуть максимальной селективности процесса. [c.238]

    В предлагаемом читателю четвертом издании учебника по химии и технологии основного органического и нефтехимического синтеза сохранена теперь уже принятая в большинстве вузов систематизация материала по основным химическим процессам данной отрасли промышленности. Это позволяет в необходимом единстве и без повторений изложить теоретические основы каждого процесса (его химию, термодинамику, механизм, кинетику и катализ) и на этой базе обосновать выбор условий синтеза и типа реакторов, обеспечивающие высокую производительность и селективность. Технологические схемы приводятся в упрощенном, принципиальном виде, обычно в приложении к технологии одного из важнейших продуктов, получаемых при помощи данного процесса. При этом дается обзор альтернативных путей производства основных продуктов и их технико-экономическое сравнение. По убеждению автора, учитывая очень большое число получаемых в данной отрасли продуктов, только такой способ изложения материала будет способствовать глубокому пониманию студентами химии и технологии основного органического и нефтехимического синтеза. [c.7]

    Повышение селективности достигается соответствующим выбором параметров процесса (температуры, давления, времени контакта) и типа реактора, подбором более селективных ката- [c.18]

    Кроме кинетических закономерностей процесса, которые являются одним из главных факторов при выборе и сравнении типов реакционных аппаратов, во многих случаях следует учитывать и экономическую эффективность зависимость себестоимости продукта и ее слагаемых, а также доход от удельной производительности реактора (рис. 17.15). Эта необходимость объясняется тем, что, как было показано ранее, технологические условия (концентрация, температура, давление, соотношение реагирующих потоков и др.) могут по-разному влиять на такие показатели, как степень превращения, селективность, удельная производительность реактора, а следовательно, и на себестоимость продукта. [c.499]

    Ввиду последовательно-параллельного типа протекающих реакций для повышения селективности выгоден реактор, близкий к модели идеального вытеснения, при отсутствии циркуляции смеси. Вместе с высокой линейной скоростью потока это предопределяет выбор трубчатого реактора с большой длиной труб малого диаметра (змеевик, трубчатка). Первая его секция служит для подогрева смеси, что для высокотемпературных реакций осуществляют в трубчатой печи топочными газами, а для других — в пароподогревателях типа, например, труба в трубе . Основная часть реакции может осуществляться в адиабатических условиях. [c.221]

    Кинетическая модель химического процесса позволяет предсказать некоторую область или варианты решений по типу реакторов и параметрам процесса, наиболее выгодным с точки зрения удельной производительности и селективности. Однако при варьировании каких-либо условий процесса удельная производительность и селективность нередко изменяются в противоположных направлениях либо появляются дополнительные затраты на стадиях подготовки реакционной смеси или разделения продуктов. Так, снижение степени конверсии или применение избытка второго реагента часто благоприятствует росту селективности и удельной производительности, но сопровождается повышенным расходом энергии на выделение и рециркуляцию непревращенных веществ повышение концентрации катализатора или инициатора увеличивает производительность, но связано с дополнительными материальными затратами. Выбор оптимального типа реактора или организации в нем теплообмена нередко сопровождаются увеличением затрат на сооружение и эксплуатацию реакционного узла. Повышение давления газофазных процессов, способствуя росту производительности, а часто и селективности, в то же время вызывает дополнительный расход энергии на компримирование. Изменение температуры, благоприятное для какого-либо из показателей процесса, может обусловить применение более дорогостоящих теплоносителей или конструкционных материалов и т. д. Поэтому оптимизация процесса по таким показателям, как максимум выхода или се- [c.358]


    Селективное гидрирование можно осуществлять в трубчатых и в колонных реакторах. При невысоком содержании примесей ацетилена и его гомологов предпочтение отдается последнему типу. Высокое содержание ацетилена предопределяет использование " трубчатого реактора. Окончательный выбор конструкции реактора зависит от свойств применяемого катализатора, а также от содержания ацетилена в исходной смеси. Режим селективного гидрирования во многом зависит от катализатора. [c.110]

    Тип протекающих в реакционно-ректификационной колонне реакций влияет на показатели процесса, определяет выбор способа управления процессом и метод его расчета. К первой группе относятся РРП с простыми реакциями. Эта группа подразделяется на две подгруппы РРП с необратимыми реакциями [5, 29] и РРП с обратимыми реакциями [3]. Основным назначением использования РРП с простыми реакциями является увеличение скорости реакций и повышение конверсии исходных реактантов. РРП со сложными реакциями составляют вторую группу. Назначение таких процессов часто не ограничивается увеличением скорости и конверсии, но служит задаче повышения селективности реакции. Примеры РРП с параллельными реакциями представлены в [17, 29] и с последовательными в [12]. В [9] описан РРП со сложной последовательно-обратимой реакцией. Наибольшее число публикаций по РРП касается обратимых реакций вида А+Вч=ьС- -Д. Связано это, в первую очередь, с очевидностью преимуществ РРП в сравнении с обычными реакторами по возможности смещения равновесия за счет использования эффекта ректификации. Между тем, возможности РРП по повышению селективности сложных реакций выявлены еще недостаточно. [c.118]

    Для оптимального осуществления сложных реакций важнейшее значение приобретает их селективность по целевому продукту—она определяет расход сырья, а следовательно, и экономичность производства. Это не означает, что в данном случае вообще не играет роли удельная производительность реактора, она лишь отступает на второй план по сравнению с простыми реакциями. Поскольку удельная производительность реакторов была подробно рассмотрена раньше, в данной главе делается упор на обоснование выбора условий обеспечения высокой или оптимальной селективности процесса. При этом мы полностью отвлечемся от тех очень важных способов регулирования селективности, которые зависят от типа реагентов или катализаторов и области протекания процесса, влияющих на отношение констант А,/А, считая, что их выбор уже сделан на предыдущих стадиях исследования. [c.397]

    Кинетические уравнения, или модели, полученные при исследовании конкретного химического процесса, используют для выбора оптимальных условий его реализации, т. е. выбора типа реакторов, температуры, начальных концентраций (парциальных давлений) и мольного соотношения реагентов, степени конверсии и т. д. На первом этапе химику-технологу нужно проанализировать найденную кинетическую модель, выявить факторы, влияющие (положительно или отрицательно) на результаты процесса и обосновать минимум вариантов его осуществления. При первичном анализе обычно руководст1вуются двумя главными показателями удельной производительностью реактора и селективностью процесса. Однако ии один из них отдельноне может служить критерием для окончательного выбора одного варианта проведения процесса. Таковыми являются еще и экономические показатели, а именно минимум себестоимости продукта, максимум прибыли при его производстве или минимум так называемых удельных приведенных затрат. [c.315]

    Повыщенис селективности достигается соответствующим выбором параметров процесса (температура, давление, время контакта) и типа реактора, подбора более селективных катализаторов н т. д, являясь составной частью более общей задачи оптимизации п юцесса. При этом повыщение селективности даже на 1% оз-начае для многотоннажного производства экономию в сотни тысяч рублей. [c.19]

    Кинетика и механизм реакций жидкофазного окисления ароматических соединений рассмотрены в главах 1—3. В на- стоящем разделе кратко обобщены те закономерности и спе-и ифические особенности реакций, которые представляют интерес при определении факторов управления скоростью и селективностью реакций окисления, выбора параметров оптимизации и типа реактора. [c.187]

    От типа реактора может зависеть не только степень превра-иХения исходных реагентов и селективность, но и выход целевого продукта. Поэтому при выборе реактора рекомендуется учитывать связь между Ха, Фл и Фд. [c.130]

    Из полученного выражения ясно видно, что при Хд = 0 Фв=1, а при Хд=1 Фв=0, и это справедливо для любых типов реакторов и любых последовательных необратимых реакций. Кривые рис. 89 рассчитаны для последнего уравнения селективности при разном соотношении констант скорости последовательных реакций. Чем больше Й2Д1, тем более резко падает селективность с увеличением степени конверсии, что во многом определяет выбор последней для данной системы реакций. Оче- [c.335]

    Найденные кинетические параметры реакций, протекающих в изученной системе, приведены в табл. 7. Эти результаты в дальнейшем легли в основу математического моделирования и расчета опытно-промышлейного реактора синтеза винилнорборнена i[52]. С целью обоснованного выбора оптимального типа реактора были выполнены расчеты реакторов идеального смешения и идеального вытеснения с ламинарным и турбулентным движением реакционной смеси. Реактор смешения оказался неэффективным из-за низкой селективности по целевому продукту. Стабильный тепловой режим и хороший выход винилнорборнена можно было бы получить в реакторе вытеснения с ламинарным потоком. Но при этом внутренний диаметр реакторной трубы не должен превышать 20 мм, а это неприемлемо в производстве вследствие конструктивных трудностей и возможного забивания трубы полимерами в процессе работы. [c.36]


Смотреть страницы где упоминается термин Селективность и выбор типа реактора: [c.110]    [c.31]    [c.499]    [c.92]   
Методы кибернетики в химии и химической технологии Издание 3 1976 (1976) -- [ c.302 ]




ПОИСК





Смотрите так же термины и статьи:

Выбор реактора и селективность

Выбор типа реактора

Реактор выбор



© 2025 chem21.info Реклама на сайте