Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Латексы синтетические дисперсность

    Латексы являются типичными представителями коллоидных систем, поскольку глобулу полимера с адсорбированным иа нем ионным стабилизатором мож но рассматривать как мицеллу. В то Hte время латексы представляют собой весьма удобную модель для изучения процессов коагуляции. Дисперсная фаза латекса — синтетический полимер, как правило, достаточно химически инертна и в отсутствие стабилизатора не взаимодействует с водой (не гидратирована). Глобулы латекса имеют сферическую форму и представляют собой твердые полимерные частицы. Однако в результате специфических свойств полимера (высокой аутогезионной способности) в латексах возможны явления, подобные коалесценции капелек эмульсии, приводящие к полному или частичному слиянию полимерных частиц. Поэтому латексы сочетают свойства систем с твердой и жидкой дисперсной фазой (золей и эмульсий). Агрегативная устойчивость синтетических латексов обеспечивается адсорбционным слоем поверхностно-активного вещества ионного или неионного характера. [c.108]


    Внимание к изучению синтетических латексов как дисперсных коллоидных систем обусловлено прежде всего их техническим значением. Как известно, производственные процессы переработки латексов в резинотехнические изделия или применения их в других отраслях промышленности связаны с взаимодействием полимерных частиц и коагуляцией латексов, протекающей в различных физических и технологических условиях. Однако вопросами латексной технологии значение коллоидной химии латексов не исчерпывается. Анализ современного состояния этой области показывает, что исследование коллоидно-химических свойств и закономерностей коагуляции синтетических латексов позволило внести значительный вклад в разработку общих проблем образования, устойчивости и разрушения дисперсных коллоидных систем [1]. [c.212]

    Уд. вес латекса близок к 1 г/сж и колеблется в зависимости от концентрации и плотности самого синтетического каучука. Вязкость меньше вязкости натурального латекса. Синтетический латекс содержит некоторое количество защитных веществ—солей жирных кислот или каких-либо других, применяемых в технике стабилизаторов, которые и обусловливают необходимую устойчивость его как дисперсной системы. Прибавление к синтетическому латексу определенного количества кислот или солей вызывает типичное явление коагуляции каучуковая часть выпадает в осадок в виде плотного и эластичного сгустка или в виде рыхлой, творожистой и даже рассыпающейся массы. Характер коагулянта зависит главным образом от состава исходного каучукообразующего вещества и условий полимеризации. [c.1063]

    Полимеризация дивинила или его гомологов (изопрена, хлоропрена и др.) в эмульсиях приводит к образованию синтетических латексов—систем, дисперсной фазой которых является каучук, а дисперсионной средой—вода, содержащая растворенные в ней вещества (эмульгаторы и пр.). Размер частиц синтетического латекса меньше, чем натурального. [c.234]

    Другой метод исследования гидратации латексных частиц основан на измерении объемного или теплового эффекта фазового перехода при замораживании и плавлении водных дисперсий синтетических латексов. Поведение различных дисперсных систем при замораживании и существование в них незамерзающих межфазных прослоек воды изучается давно (обзор ранних работ см. в [I]). Исследования течения незамерзающих прослоек воды в кварцевых капиллярах [32, 329, 525] углубили представления о структурных изменениях граничных слоев воды, эффективная толщина которых имеет порядок 10 м и убывает с понижением температуры замораживания. [c.191]


    Химический состав водной фазы (дисперсионной среды) синтетических латексов сравнительно прост, а дисперсная фаза обычно состоит из достаточно инертного в химическом отношении и в большинстве случаев гидрофобного вещества. Поэтому едва ли можно ожидать, что при астабилизации этих систем на поверхности частиц могут происходить какие-нибудь реакции, за исключением тех хорошо изученных реакций, в которых участвует стабилизатор. У латексов с гидрофобным полимером сольватация дисперсной фазы, которая может влиять на устойчивость коллоидной системы, безусловно, отсутствует. Сферическая или близкая к сферической форма частиц устраняет влияние на их взаимодействие неровностей поверхности и позволяет считать, что при столкновении двух глобул они ведут себя как два идеальных шарика. Дисперсная фаза латексов, как правило, является диэлектриком, и при электрофорезе можно не учитывать поправку на проводимость частиц. Большая вязкость полимеров позволяет рассматривать латексные глобулы как твердые частицы. Это значительно упрощает трактовку экспериментальных результатов, так как такие частицы не могут деформироваться под влиянием движения окружающей жидкости. Наконец, весьма существенно, что синтетические латексы можно получать с применением почти любого эмульгатора. Это представляет огромное удобство для экспериментатора, изучающего влияние на свойства латекса природы стабилизующих веществ. [c.382]

    Определение содержания дисперсной фазы в синтетическом латексе с помощью визуального нефелометра сравнения. [c.26]

    Вначале в США, а в 1961 г. в СССР В.П. Гончаровым предложено использовать синтетический латекс в качестве дисперсной фазы обратных эмульсий. При этом образуется множественная эмульсия (см. рис. 1, г). [c.216]

    Синтетические латексы представляют собой коллоидные многокомпонентные системы, состоящие из полимера, стабилизатора (эмульгатора), электролитов и других компонентов. Дисперсная фаза состоит из частиц полимера, стабилизатора, электролита и других компонентов, дисперсионная фаза — из водного раствора эмульгатора. [c.262]

    Главной характеристикой всякой коллоидной многокомпонентной системы является степень дисперсности. Все синтетические латексы относятся к полидисперсным системам, размер частиц которых колеблется от сотых долей до нескольких микрометров. [c.262]

    Синтетические латексы представляют собой более высокодисперсные системы, чем натуральный латекс. Частицы синтетических латексов меньше и более однородны по размерам, чем частицы натурального латекса (0,05 мкм в синтетических латексах, 0,15—14 мкм в натуральном). Благодаря высокой дисперсности синтетические латексы обладают рядом преимуществ по сравнению с натуральным латексом большей устойчивостью, лучшей диффузионной способностью и т. д. [c.262]

    Исследованиями показано, что устойчивость концентрированных дисперсий, т. е. суспензий или эмульсий с высоким содержанием дисперсной фазы, к которым принадлежат синтетические латексы, обусловлена наличием на поверхности частиц каучука абсорбционных пленок стабилизатора (эмульгатора), являющихся упруго-пластично-вязкими структурированными образованиями. [c.262]

    Установлено, что свойства дисперсной фазы синтетических латексов почти не влияют на свойства латексов. Это объясняется тем, что у каждой частицы каучука имеется достаточно плотный адсорбционный слой. Влияние дисперсной фазы сказывается лишь при очень глубоких изменениях, которые ведут к разрушению латекса. К таким изменениям относятся коагуляция, высыхание при пленкообразовании и др. Только в этом случае свойства коагулянта и физико-химическая характеристика полученных пленок определяются природой полимера, который содержится в латексе. [c.263]

    Из уравнений светорассеяния, приведенных на стр. 47, 48, следует, что рассеяние света сильно зависит от размера частиц дисперсной фазы (по Релею, пропорционально квадрату объема этих частиц). Уменьшение числа частиц, даже если оно совершается согласно уравнению быстрой коагуляции Смолуховского , в меньшей мере отражается на мутности системы. В результате, несмотря на уменьшение числа частиц во время коагуляции, полное рассеяние все-таки растет . Сильно разбавленные синтетические латексы [c.83]

    Условия смешения и свойства самих полимеров определяют размер частиц возникающей дисперсии полимера в полимере. Если полимеры смешиваются в виде латексов, и защитные вещества латексов не приводят к агломерации однородных или разнородных частиц, то в процессе коагуляции можно получить смесь полимеров, размер частиц в которой задается размером исходных частиц латекса. Размер частиц в синтетических латексах колеблется в пределах 0,02— 0,2 мкм, поэтому смешением полимеров указанным способом можно добиться значительной дисперсности частиц. [c.26]


    Латексы являются полидисперсными системами. Вследствие малого размера частиц и небольшой разницы в плотностях дисперсной фазы и серума синтетические латексы обладают высокой седи-ментационной устойчивостью. Латексы, стабилизованные обы чными мылами, имеют отрицательно заряженные частицы и агрегативно устойчивы в щелочной среде. Для них, как и для эмульсий, стабилизованных солями жирных кислот, соблюдается правило Шульце — Гарди. Латексы, содержащие поверхностно-активные вещества, в молекуле которых имеется сульфо-группа, устойчивы и в щелочной, и в кислой среде, поскольку сульфокислоты являются сильными электролитами. [c.27]

    КИХ прослоек [70]. Подобные системы образуются, в частности, в синтетических латексах [67,71—73]. На рис. 2 представлены потенциальные кривые для частиц полиакрилонитрила, водная суспензия которых обнаруживает упругие свойства при концентрации дисперсной фазы 15 вес.% и выше. [c.133]

    Синтетические латексы имеют высокую степень дисперсности. Путем изменения условий полимеризации, а также за счет специальных технологических приемов (например, агломерация частиц) можно получить латексы с частицами требуемого размера. [c.199]

    Синтетический латекс содержит некоторое количество защитных веществ — солей жирных кислот или каких-либо других, применяемых в технике стабилизаторов, которые и обусловливают необходимую устойчивость его как дисперсной системы. Прибавление к синтетическому латексу определенного количества кислот или солей вызывает типичное явление коагуляции каучуковая часть выпадает в осадок в виде плотного и эластичного сгустка или в виде рыхлой, творожистой и даже рассыпающейся массы. [c.7]

    Описанная форсунка испытана [64] при сушке распылением синтетических латексных полимеров в сушильной камере диаметром 1,4 мм и высотой 1,2 м (угол конуса 60°). Подбор отражателя обеспечил высокую степень заполнения объема сушильной камеры факелом распыла. Опыты также показали, что изменение давления распыливающего воздуха оказывает заметное влияние на дисперсность распыла. Например, при сушке распылением латекса полиметилметакри-лата средний поверхностно-объемный диаметр частиц составлял при давлении 100 кПа —7 мкм, при давлении 200 кПа —6,15 мкм и при давлении 300 кПа — [c.125]

    Синтетический латекс представляет собой коллоидную систему, получаемую искусственным путем, в которой, так же как и в натуральном латексе, дисперсной фазой является каучук, а дисперсионной средой—вода, содержащая растворенные в ней ве--щества (эмульгаторы, стабилизаторы и др.). По физико-химическим свойствам синтетический латекс напоминает природный. [c.155]

    В последнее время исследование таких систем интенсивно развивается, чему способствует производство в широком ассортименте синтетических латексов, дисперсная фаза которых нередко состоит из практически монодисперсных шариков. Близкие к сферической форме частицы получают также путем оплавления в плазменной горелке распыленных порошков металлов, окислов металлов и неметаллов. [c.59]

    К наиболее важным свойствам синтетических латексов относятся концентрация, степень дисперсности, вязкость и устойчивость при воздействии различных факторов. Комплексом этих коллоидно-химических свойств определяется техническая ценность того или иного латекса. Для успешного осуществления технологических процессов изготовления изделий из латексов в последние вводятся ряд веществ стабилизаторы, загустители, вулканизующие агенты, наполнители, пластификаторы и др. [c.400]

    Цель исследований в К. х.-развитие научных основ управления образованием, св-вами и разрушением дисперсных систем (ДС) и граничных слоев путем регулирования межмолекулярных взаимод. на границах раздела фаз, прежде всего с по.мощью поверхностно-активных веществ (ПАВ), способных самопроизвольно концентрироваться (адсорбироваться) на пов-сти частиц дисперсной фазы. Объектами исследований в К. х. являются разнообразные ДС и пов-сти раздела между дисперсной фазой и дисперсионной средой, а также границы раздела между макроскопич. фазами адсорбц. слои (моно- и полимолекулярные) и смачивающие пленки тонкие пленки-как плоские, так и замкнутые (ламеллярные системы, в т. ч. липосомы) нити (фибриллярные системы) аэрозоли (дымы, туманы, смог, облака), а также порошки пены и газовые эмульсии эмульсии и латексы (с.м. Латекс натуральный, Латексы синтетические, а т кже Смазочно-охлаждающие жидкости. Эмульсионная полимеризация) суспензии, взвеси и пасты золи и гели системы с твердой дисперсионной средой (металлы и сплавы, горные породы, газовые и жидкостные включения в твердых телах). [c.433]

    Синтетический латекс представляет собой коллоидную дисперсию типа масло в воде. Частицы каучука (масляная фаза) в латексе имеют обычно размеры от нескольких десятков до сотен нанометров (редко менее 10 и более 1000 нм). Как всякая дисперсная система с развитой поверхностью раздела, латексы термодинамически нестабильны. Для сохранения коллоидных свойств системы в течение длительного времени поверхность раздела следует гид-рофилизовать, что достигается введением в систему дифильных поверхностно-активных веществ (ПАВ), например солей карбоновых кислот различной природы и строения. Адсорбированные на поверхности раздела гидратированные молекулы и ионы ПАВ образуют защитные слои. Эффективная толщина таких слоев, оцененная по данным вискозиметрических [4, 5], дилатометрических [6], термографических [7] измерений, изменяется от нескольких единиц до десятков нанометров в зависимости от природы и количества образующего их эмульгатора, а также от степени заполнения поверхности частиц адсорбированным эмульгатором (так называемой адсорбционной насыщенности). Адсорбционная насыщенность синтетических латексов обычно лежит в диапазоне от [c.587]

    Способность системы сохранять дисперсность во времени при отсутствии внешних астабнлизующих воздействий далеко не исчерпывает требований к устойчивости синтетических латексов. В отличие от латексов — полупродуктов эмульсионных каучуков, которые должны сохранять устойчивость лишь на стадиях полимеризации и отгонки незаполимеризовавшихся мономеров, товарные латексы подвергаются в процессе их получения и переработки ряду дополнительных специфических воздействий механических [8—12], замораживанию-оттаиванию [13—16], испарению влаги с поверхности и в объеме [8, 17, 18], а также в латексы вводят электролиты [9, 19—24], наполнители, неионные эмульгаторы в качестве стабилизаторов [23, 25—28]. 6о многих случаях требуется ограниченная устойчивость к одним и высокая — к другим коагулирующим воздействиям. Например, при проведении процесса агломерации частиц латекс должен обладать лишь ограниченной устойчивостью к агломерирующим воздействиям, препятствующей макрокоагуляции этот же латекс в процессе дальнейшей переработки при получении на его основе пенорезины должен обладать высокой устойчивостью к механическим воздействиям, но ограниченной устойчивостью к действию специфических химических агентов — латекс должен быстро желатинировать. (Иногда желательно даже, чтобы латекс желатинировал при повышенной температуре без введения специальных агентов. Такой процесс положен, например, в основу одного из способов получения пенорезинового подслоя при производстве ковров.) [c.588]

    В химической промышленности с эмульсиями имеют дело при проведении различных синтезов, в экстракционных аппаратах, при процессах перемешивания. Для получения синтетических латексов используется эмульсионная полпмеризацпя — полимеризация а каплях дисперсной фазы. Эмульсии применяют для получения пористых органических сорбентов, мембран, пленок, покрытий. [c.348]

    Однако полимеры растворяются не во всех растворителях следовательно, и они могут образовывать дисперсные системы. Наиболее известны дисперсии полимеров в воде, представляющие собой эмульсии типа М/В и называемые в технологии латексами. Латексы, так же, как и обычные эмульсии, образуются несамопроизвольно, а лишь в присутствии эмульгаторов. Будучи типичными представителями эмульсий, латексы обладают характерными особенностями, что позволяет широко использовать их в промышленности. Исключительно важное значение для народного хозяйства имеют синтетические латексы, такие как бутадиен-стирольный (СКС-С, СКП-ЗОП, СКС-50Н и др.), бутадиен-ни-трильный (СКН-40К, СКН-40П), хлоропреновый (Л-4, Л-7, ЛП, ЛГ), карбоксилатный (СКД-1), бутилкаучуковый (БК-2045Т) и др. [c.295]

    Коллоидные системы, дисперсные системы с частицами дисперсной фазы от 10 до 10 см. Коллоидные частицы, участвуя в интенсивном броуновском двих<ении, противостоят седиментации (оседание частиц на дно) в поле сил земного тяготения и сохраняют равномерное распределение по объему дисперсионной среды. Наиболее важны и многообразны коллоидные системы с жидкой дисперсионной средой. Их делят на лиофильные и лиофобные. В первых частицы дисперсной фазы интенсивно взаимодействуют с окружающей жидкостью, поверхностное натяжение на границе фаз очень мало, вследствие чего эти коллоидные системы термодинамически устойчивы. К лиофильным коллоидным системам относят мицеллярные (мицелла - коллоидная частица), растворы ПАВ (поверхностно активные вещества), растворы некоторых высокомолекулярных веществ, органических пигментов и красителей, критических эмульсий (образующиеся вблизи критической температуры смешения двух жидких фаз), а также водные дисперсии некоторых минералов. В лиофобных коллоидных системах частицы слабо взаимодействуют с дисперсионной средой, межфазное натяжение довольно велико, система обладает значительным избытком свободной энергии и термодинамически неустойчива. Агрегативная устойчивость лиофобных коллоидных систем обычно обеспечивается присутствием в системе стабилизирующего вещества, которое адсорбируется на коллоидных частицах, препятствуя их сближению и соединению (коагуляции - образованию агрегатов). Типичные лиофобные коллоидные системы - золи металлов, оксидов и сульфидов, латексы (водные дисперсии синтетических полимеров), а также гели (структурированные коллоидные системы с жидкой дисперсионной средой), возникающие при коагуляции и структурировании золей. [c.116]

    Описанные выше составы для очистки поверхности серебра являются водными растворами. При обработке сложнопрофилированных поверхностей экспонатов из серебра удаление остатков растворов из углублений затруднительно, а в случае, если пластинки серебра закреплены на поверхности дерева или ткани, их вообще нельзя обрабатывать водными растворами. Поэтому применяют очищающие составы на полимерной пленкообразующей основе — водные растворы или водоразбавляемые ианотерсии ПВС, ПВА, сополимеров дибутилмалеината с винилацетатом, сополимеров винилхлорида и винилиденхлорида, синтетического каучука, Na-КМЦ с добавлением небольших количеств ПАВ. В зависимости от полимера в эти составы можно вводить и различные специфические добавки. Так, в латексы на основе синтетического каучука или ПВА можно вводить фосфорную кислоту и тиомочевину, причем дисперсная система при этом не разрушается. Находит применение, например, композиция, содержащая латекс ПВА или каучука СКС-30, тиомочевину, ортофосфорную кислоту, глицерин и воду. Состав, включающий латекс ПВА или каучука СКС-30, едкое кали, синтанол ДС-10, глицерин и воду, эф-, фективен для удаления воско-жировых загрязнений, копоти и сажи. [c.177]

    ЛАТЁКСЫ СИНТЕТИЧЕСКИЕ, водные дисперсии синт. полимеров. Наиб, распространены латексы бутадиен-стирольных, хлоропреновых, бутадиен-нитрильных, карбокси-латных и др. каучуков выпускаются также латексы нек-рых термопластов, напр, поливинилацетата, поливинилхлорида. Для стабилизации коллоидной системы Л. с. используют ПАВ (эмульгаторы), гл. обр. анионные. Конц. Л. с. 20— 75%, pH от 4—5 до 12—13, поверхностное натяжение 30—60 мН/м, средний диаметр частиц дисперсной фазы (глобул) 60—700 нм. Получ. 1) эмульсионная полимеризация с послед, отгонкой остаточного мономера 2) растворение полимера в углеводороде (изопентане, СС14 и др.) с послед, эмульгированием р-ра в воде в присут. ПАВ и отгонкой орг. р-рителя (такие латексы наз. искусственными способ используют для получ. дисперсий бутилкаучука и синт. полиизопрена). Готовые Л. с. обычно концентрируют отстаиванием (сливкоотделением), центрифугированием или упариванием. [c.297]

    Казеинат аммония применяется для стабилизации синтетических латексов в клеевых композициях. Например, бутадиен-стирольный латекс СКС-65 ГПБ, применяемый в полимерцементных клеях, стабилизируют казеинатом аммония (см. гл. 3). Загущение бутадиен-стироль-ного латекса казеинатами является результатом гидрофобного взаимодействия молекул казеината с дисперсной фазой и гидрофильного взаимодействия с дисперсионной средой латекса. Варьируя свойства латекса и загустителя, можно эффективно влиять на процесс загущения. [c.31]

    Хлоропреновый латекс (щелочной) по степени дисперсности своих частиц занимает цромежуточное место между бутадиеновым синтетическим лате1ксом и натуральным (см. табл. 53)- Средний размер частиц неопренового латекса (тип 57) составляет 0,1 1. Устойчивость хлоропренового латекса ниже, чем бутадиенового. Это объясняется, главным образом, тем, что полихлоропрен постоянно отщепляет НС1, что приводит к постепенному уменьшению щелочности eipyMa и, следовательно, к уменьшению С -потенциала. При pH = 7 происходит коагуляция латекса. Латекс тип 571 обладает высоким значением рН=11—12 и является более, устойчивым. [c.403]

    Большинство синтетических латексов более высоко-дисперсны и однородны по величине частиц, чем натуральный латекс (сок бразильской гевеи), диа.метр частгт которого колеблется от 0,05 до 2 мкм. На рис. 1.14 показано распределение частиц по величине для некоторых синтетически.х пленкообразующих латексов 2, з Размер [c.36]


Смотреть страницы где упоминается термин Латексы синтетические дисперсность: [c.382]    [c.297]    [c.322]    [c.322]    [c.204]    [c.6]    [c.133]    [c.133]    [c.292]   
Основы технологии синтеза каучуков (1959) -- [ c.514 , c.516 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсность латексов

Латекс синтетический

Латексы



© 2025 chem21.info Реклама на сайте