Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсная фаза поверхностные свойства

    Ранее отмечалось, что суспензии и лиозоли различаются раз мерами частиц. Однако несмотря на то что при одной и той же природе фаз поверхностные свойства отдельных частиц практичен ски одинаковы, различие в размерах частиц дисперсных систем существенно сказывается на многих объемных свойствах этих систем. Как уже указывалось при рассмотрении оптических свойств дисперсных систем, рассеяние света (опалесценция), характерное для золей, с увеличением размера частиц постепенно переходит в отражение света. При одинаковых массовых концентрациях мутность суспензий значительно больше, чем золей. [c.343]


    Понятие фазы применимо только к макроскопическим объектам, для которых свойства вещества в его объеме являются определяющим по сравнению с поверхностными свойствами. Если часть системы находится в настолько высокой степени дисперсности, что поверхностными свойствами нельзя пренебречь, то классическое понятие фазы становится к такой части системы неприменимым. При наличии сильно развитой поверхности, как правило, имеют место физическое (адсорбция) и химическое (хемосорбция) взаимодействия различных частей системы по поверхности. Они приводят к образованию между ними промежуточных слоев, и в этом случае переход от одной части системы к другой не будет сопровождаться резким изменением свойств, т. е. между этими частями нельзя провести достаточно резкую границу. В связи с этим, например, в коллоидных растворах с очень высокой степенью дисперсности твердого вещества последнее не может выступать в качестве самостоятельной фазы. [c.192]

    Как известно [146], диспергирование пигментов в растворах пленкообразующих веществ при изготовлении лакокрасочных материалов является сложным физико-химическим процессом, который зависит как от свойств и состава диспергируемой системы (концентрации, вязкости, степени наполнения, дисперсности и поверхностных свойств твердой фазы), так и от выбранного способа диспергирования и конструктивных особенностей диспергирующего устройства, а также от поведения молекул (или их агрегатов) пленкообразователя в растворе, молекулярной массы пленкообразователя, наличия полярных групп, их способности взаимодействовать с активными центрами на поверхности пигмента, типа растворителя и др. [c.79]

    Изменения процесса отделения диспергированного нефтепродукта можно ожидать при воздействии на частицу одного лишь магнитного поля, например, вследствие изменения в результате магнитной обработки состояния дисперсной системы степени дисперсности частиц фазы, поверхностных свойств дисперсной фазы, свойств дисперсионной среды и т. п. Поэтому прежде всего была проведена серия опытов с целью определения возможного эффекта от воздействия на частицу только магнитного поля. [c.183]

    Свойства газовой эмульсии сильно зависят от температуры, давления и поверхностных свойств жидкостей на границе с газовой фазой. Основные показатели, характеризующие дисперсную фазу газовых эмульсий газосодержание, дисперсный и химический состав газовой фазы. [c.145]


    В качестве исходной информации для расчета использовались физико-химические свойства компонентов (вязкость, плотность, поверхностное натяжение) и начальное распределение дисперсной фазы (водной) по высоте столба эмульсии. Из предварительных экспериментальных данных распределения капель дисперсной фазы по размерам по высоте столба эмульсии были определены значения параметров модели минимизацией отклонения экспериментальных и расчетных данных. К таким параметрам относятся X, = 0 X = 10-2 = 0,0011. [c.298]

    Указанные обстоятельства обусловливают третий подход к синтезу операторов ФХС, основанный на модельных представлениях о внутренней структуре процессов, происходящих в технологических аппаратах. Основу этого подхода составляет набор идеальных типовых операторов, отражающих простейшие физико-хими-ческие явления (модель идеального смешения, модель идеального вытеснения, диффузионная модель, ячеечная модель, комбинированные модели и т. п.). Математическое описание технологического процесса сводится к подбору такой комбинации простейших операторов, чтобы результирующая модель достаточно точно отражала структуру реального процесса [1 ]. Такой подход позволяет сравнительно просто учесть влияние важнейших гидродинамических факторов в системе на макроуровне (зон неидеальности смешения, циркуляционных токов, байпасных потоков и других гидродинамических неоднородностей в аппарате), а также стохастических свойств ФХС (распределения элементов потока по времени пребывания в аппарате, коалесценции и дробления частиц дисперсной фазы, распределения частиц по размерам, вязкости, плотности, поверхностному натяжению и т. д.). [c.14]

    Из изложенного следует, что для снижения расхода деэмульгатора он должен слабо растворяться в сплошной и в дисперсной фазе и обладать высокими поверхностно-активными свойствами. В зависимости от того, в какой фазе его растворимость выше, различают водорастворимые и нефтерастворимые деэмульгаторы. Однако такое разделение достаточно условно и истинной растворимости деэмульгатора не отражает. [c.62]

    Особое внимание следует обратить на изучение коллоидных свойств высокомолекулярных компонентов нефти на примерах тяжелых высокосмолистых нефтей, природных асфальтов, тяжелых нефтяных остатков и искусственно приготовленных коллоидных систем, в которых асфальтены будут служить дисперсной фазой, а высокомолекулярные ароматические углеводороды и нефтяные смолы — дисперсионной средой, при различных соотношениях, компонентов в коллоидной системе. Необходимо также интенсивно изучать поверхностно-активные и адсорбционные свойства асфальтенов, выяснить зависимости этих свойств от качества и количества полярных структурных звеньев в составе их молекул и от химической природы нефтей, из которых они выделены. [c.108]

    В зоне БВ структурирующиеся молекулы углеводородов связаны друг с другом в рыхлые ассоциаты, обладающие повышенной подвижностью. Вязкость системы в этой зоне прн данной температуре непостоянна и зависит от объемной концентрации дисперсной фазы (надмолекулярных структур). Высокая дисперсность частиц твердой фазы создает избыток поверхностной энергии поэтому такие системы термодинамически и кинетически неустойчивы и стремятся к расслоению на две фазы. Изменяются также структурно-механические свойства НДС. Все эти стадии отображены на рис. 4. [c.37]

    Межфазная граница в нефтяных системах может быть двух типов непроницаемой по отношению к ряду растворителей (кристаллиты карбенов и карбоидов) и частично проницаемой (ассоциаты). В первом случае на межфазной границе образуется адсорбционный слой, непосредственно примыкающий к кристаллиту, и граничный (поверхностный) слой, включающий в себя адсорбционный, свойства которого в результате влияния поля поверхностных сил отличаются от объемного слоя. При рассмотрении нефтяных смесей с дисперсной фазой в виде ассоциатов следует, по-видимому, считать, что сольватный слой на границе раздела фаз возникает как результат адсорбционного взаимодействия и локальной диффузии ее компонентов, что обусловлено их различной склонностью к межмолекулярным взаимодействиям. [c.32]

    Стабильность является одним из основных свойств эмульсий, однако недостаточным для полной характеристики, так как необходимо знать геометрические и концентрационные параметры системы, т. е. размер капель и концентрацию их. Эти параметры зависят от метода получения и физических свойств гетерогенной системы (поверхностного натяжения, вязкости, плотности фаз и т. д.). Результаты дисперсного анализа и соотношение объемов непрерывной и дисперсной фаз наиболее полно характеризуют эти параметры. Зная объем дисперсной фазы Уф и общее число капель эмульсии п легко получить средний объем капли, входящий в уравнение (2)  [c.421]


    Присадки и наполнители. Присадки обладают свойствами поверхностно-активных веществ. Эго предопределяет их активность как в объеме смазки так и на границе раздела дисперсная фаза — дисперсионная среда. Для улучшения свойств смазок применяют в основном те же присадки, что и для легирования масел противоизносные, противозадирные, антифрикционные, защитные, вязкостные и адгезионные. Применяют также ингибиторы окисления, коррозии. Многие присадки являются полифункциональными. [c.311]

    Солеустойчивость глинистых минералов и их смесей главным образом определяется типом их кристаллической структуры и мо-я ет быть тем выше, чем в меньшей мере изменяются их поверхностные свойства при действии различного рода электролитов-коагуляторов [58]. Высокая солеустойчивость коагуляционных структур глинистых минералов обеспечивается особым типом контактов частиц дисперсной фазы. [c.15]

    В результате адсорбции эмульгатора снижается межфазное поверхностное натяжение, что благоприятствует процессу эмульгирования, т.к. уменьшается необходимая работа , однако не этот фактор играет главную роль. Несмотря на то, что низкое натяжение благоприятно отражается на стабильности эмульсий с термодинамической точки зрения, все же основным является создание защитного слоя на поверхности элементов дисперсной фазы. Именно механические свойства АСС и определяют в главной степени устойчивость эмульсий, [c.57]

    Учение о коллоидах было выделено как самостоятельное направление научных исследований немногим более ста лет назад и развивалось на стыке физики и химии. По сути, предметом рассмотрения были дисперсные системы с определенными пределами размеров дисперсной фазы. Направлениями исследований коллоидных систем явились диффузия, сорбция, вязкость, электропроводность, оптические и поверхностные свойства, устойчивость против расслоения и многие другие. Важным разделом коллоидной химии считается коллоидная механика, преобразованная в физико-химическую механику дисперсных систем, изучающая структурообразование в дисперсных системах и их структурно-механические свойства. [c.13]

    Граничный слой характеризуется некоторой эффективной толщиной, за пределами которой отклонение локальных свойств от их объемных значений становится несущественным. Изменение локальных свойств граничного слоя, а точнее выравнивание их со свойствами дисперсионной среды происходит благодаря наличию некоторого радиуса поверхностных сил дисперсной фазы и монотонного убывания в этом направлении сил межмолекулярного взаимодействия между компонентами дисперсной фазы и дисперсионной среды. [c.42]

    Эксперименты по регулированию свойств продуктов термолиза путем изменения растворяющей способности дисперсионной среды реакционной массы представляло интерес расширить за счет изучения возможности получения аналогичных результатов специальным воздействием на дисперсную фазу. С этой целью в систему вводи лись поверхностно-активные синтетические добавки не нефтяного происхождения, инициирующие зародышеобразование в реакционной массе. В частности, в качестве одной из добавок применялся олигомер, обладающий поверхностно-активными свой - [c.135]

    В различных условиях существования углеводородные системы, нефти, газовые конденсаты и продукты их переработки могут рассматриваться в виде многокомпонентных нефтяных дисперсных систем. Изменение термобарических условий приводит к превращениям инфраструктуры указанных систем, которые наиболее выражены в области фазовых переходов. При этом важнейшими параметрами, которые характеризуют систему на микроуровне, являются дисперсность, энергия межмолекулярных взаимодействий, размеры, конфигурация, поверхностная и объемная активность структурных образований, представляющих дисперсную фазу, степень их сольвати-рования компонентами дисперсионной среды. Изменение указанных параметров отражается на основных макрохарактеристиках системы, например плотности, вязкости, упругости пара, агрегативной и кинетической устойчивости. Причем, как правило, при отклике на внешние или внутренние возмущения на нефтяную дисперсную систему изменение этих характеристик сопровождается нелинейными и неаддитивными эффектами. Отклонения от аддитивности различных свойств нефтяных дисперсных систем в процессе их превращений характерны не только для смесей различных углеводородов, но могут проявляться даже в пределах одного гомологического ряда. [c.302]

    Когда дисперсность системы столь высока, что линейные размеры фаз соизмеримы с толщиной переходного слоя, рассмотренный выше способ термодинамической трактовки гетерогенных систем значительно усложняется. Таков, например, случай тонких пленок, и в частности пенных пленок. Здесь уже величины, характеризующие поверхностные свойства, становятся функцией линейного размера фаз (в случае пленок — их толщины). Эти особые случаи требуют и особого рассмотрения (см. гл. 6). [c.79]

    Образование эмульсий связано с поверхностными явлеЕгиями на границе раздела фаз дисперсной системы, прежде всего поверхностным натяжением — силой, с которой жидкость сопротивляется увеличению своей поверхности, Известно, что поверхностно — ак— тивные вещества (ПАВ) обладают способностью понижать поверхностное натяжение. Это свойство обусловливается тем, чтодобав — /ение ПАВ избирательно растворяется в одной из фаз дисперсной системы, концентрируется и образует адсорбционный слой — Геленку ПАВ на границе раздела фаз. Снижение поверхностного натяжения способствует увеличению дисперсности дисперсной фазы. [c.146]

    ПАВ — это вещества с асимметричной структурой, в которых молекулы состоят из одной или нескольких гидрофильных групп и содержат одну или несколько гидрофобных радикалов. Гидрофильная группа — активная полярная составляющая молекулы ПАВ — обладает ненасыщенной вторичной валентностью и на границе раздела нефть — вода погружается в водную фазу. Гидрофобная группа (радикал) — инактнвная неполярная составляющая молекулы ПАВ, не имеет валентности и тяготеет к нефтяной (масляной) фазе. Ее часто называют олеофильной группой. Она представляет собой цепочку углеводородных радикалов. Такая структура молекул веществ, называемая дифильной, обуславливает ее поверхностную (адсорбционную) активность, т. е. способность вещества диффундировать через объем фазы и концентрироваться на поверхностях раздела фаз таким образом, что полярная (гидрофильная) часть молекулы, имеющая родственную природу с полярной фазой (например, водой), растворяется в ней, а неполярная (олеофильная) цепочка ориентируется в сторону менее полярной фазы, например нефти или керосина. ПАВ адсорбируются и на твердой поверхности, изменяя при этом ее молекулярно-поверхностные свойства. В результате адсорбции ПАВ происходит диспергирование гетерогенных систем образование защитной, более гидрофобной (или гидрофильной) по сравнению с первоначальной, пленки стабилизация (дестабилизация) дисперсной среды. [c.66]

    Общие свойства эмульсий. Эмульсиями называются системы, в которых дисперсионная среда и дисперсная фаза находятся в жидком состоянии. Для возможности образования устойчивой эмульсии необходимо, чтобы эти жидкости были практически взаимно нерастворимы или обладали достаточно малой растворимостью " Образование поверхности раздела всегда требует затраты работы, и работа эта тем больше, чем выше поверхностное натяжение на этой поверхности. Поэтому образование эмульсии облегчается и полученная эмульсия становится более устойчивой, если в систему вводятся вещества, Которые, адсорбируясь на этоц поверхности раздела, уменьшают поверхностное натяжение на ней. Такие вещества называют эмульгаторами. [c.537]

    Эмульсии относятся к микрогетерогенным системам, частицы которых видны в обычный оптический микроскоп, а коллоидные растворы принадлежат к ультрамикрогетерогенным системам, их частицы не видны в обычный микроскоп. Хотя по своей природе эти системы близки, но физико-химические их свойства различны и зависят в значительной степени от дисперсности. При образовании эмульсии образуется огромная поверхность дисперсной фазы. Так, количество глобул воды в одном литре 1%-ной высокодисперсной эмульсии исчисляется триллионами, а общая межфазная площадь поверхности — десятками квадратных метров. На такой огромной межфазной поверхности может адсорбироваться большое количество веществ, стабилизирующих эмульсию. В процессе образования эмульсии на хщспергирование жидкости затрачивается определенная работа и на поверхности раздела фаз концентрируется свободная поверхностная энергия — избыток энергии, содержащейся в поверхностном слое (на границе двух соприкасающихся фаз). Энергия, затраченная на образование единицы межфазной поверхности, называется межфазным поверхностным натяжением. Удельная поверхностная энергия измеряется работой изотермического и обратимого процесса образования единицы поверхности поверхностного слоя и обозначается а. [c.15]

    Пластичные смазки являются распространенным видом смазочных материалов в большинстве случаев они состоят пз трех компонентов — дисперсионной среды (жидкой основы), дисперсной фазы (твердого загустителя) и добавок (модификаторов структуры, присадок и наполнителей). В качестве дисперсионной среды смазок используют нефтяные, синтетические и иногда растительные масла. Загустителями чаще всего являются металлические мыла (соли высокомолекулярных жирных кислот), твердые нефтяные углеводороды (церезины, петролатумы) и некоторые продукты неорганического (бентонит, силикагель) и органического (пигменты, производные мочевины) происхождения. Загустители образуют в дисперсионной среде стабильную структурированную систему, их содержание не превышает 20—22% (обычно 8—12%). Для регулировапия структуры и улучшения функциональных свойств в смазки вводят добавки (поверхностно-активные вещества и твердые порошкообразные продукты). [c.253]

    При формировании адсорбционно-сольватного слоя из жидкой фазы необходимо, чтобы энергия ММВ соединений, переходящих в слой, значительно превосходила энергию ММВ среды. Согласно правилу выравнивания полярностей Ребиндера, в слое концентрируется вещество, обладающее полярностью, промежуточной между полярностями веществ в ядре и дисперсионной среде раздела фаз. Так, на границе фаз асфальтены — парафины ароматические углеводороды хорошо взаимодействуют с поверхностью ядер ССЕ. Па следующих стадиях происходит рост размеров ССЕ. При достижении необходимой разности плотностей между исходной фазой и ССЕ, последние начинают перемещаться ио системе и формируют межфазный слой — поверхность разрыва — границы разделяющей фазы (подсистемы) со схожими свойствами. Поверхность разрыва представляет собой переходный слой— реальный объект, обладающий объемом. Внутри межфазного слоя в результате его разрушения происходит непрерывное изменение свойств от характерных для дисперсной системы до свойств новой фазы. В зависимости от степени искривления иоверхности ядер ССЕ различают макрогете-рогенные (плоская поверхность) и микрогетерогенные (искривленная поверхность) системы. По мере перехода от макро-гетерогенных систем к микрогетерогенным существенно увеличивается поверхность раздела и роль поверхностных явлений. При увеличении размеров коллоидных частиц происходит уменьшение их межфазной поверхности, в результате часть со- [c.123]

    Высокая дисперсность асфальтенов создает избыток поверхностной энергии, вследствие чего такие системы термодинамически неустойчивы и стремятся к расслоению на две фазы. При недостаточном стабилизирующем действии окружающей дисперсионной среды частицы асфальтенов предварительно ассоциируются, сцепляясь под действием молекулярных сил в агрегаты, что приводит к потере кинетической устойчивости системы. В значительной степени свойства 1ефтяных остатков как коллоидных систем зависят от степени дисперсности асфальтенов, а в случае крекинг-остатков также от степени дисперсности карбенов и карбоидов. В обычных условиях коллоидная система, состоящая из дисперсной фазы (асфальтены, механические примеси) и дисперсионной среды (высокомолекулярные углеводороды, смолы), термодинамически и кинетически неустойчива тем не менее, расслоение на фазы происходит медленно, что обусловлено в основном свойствами самой системы. Коагуляцию асфальтенов могут вызвать изменение состава дисперсионной среды, изменение температуры, механические воздействия и другие факторы. [c.56]

    Разница седиментационных объемов агрегативно устойчивых и неустойчивых систем наиболее четко проявляется, если частицы имеют средние размеры. Крупные частицы неустойчивых систем благодаря заметной силе тяжести образуют более плотный осадок, а очень мелкие частицы в устойчивых системах оседают настолько медленно, что наблюдать за осал<дением не представляется возможным. Причиной рыхлости осадков является анизометрия образующихся первичных агрегатов или флокул. Исследования показывают, что наиболее вероятны цепочечные и спиральные первоначальные образования, из которых затем получаются осадки с большим седиментационным объемом. Осадки того или иного качества получают прн осаждении и фильтрации суспензий в различных производствах. Их свойства обычно регулируют путем изменения pH, добавления поверхностно-активных веществ. Увеличение концентрации дисперсной фазы способствует образованию объемной структуры в агрегативно неустойчивых системах. Этот факт широко используется для предотвращения седиментации, в частности, при получении пластичных материалов и изделий из них. [c.344]

    Из приведенных примеров видно, что структуры со свободной и плотной упаковкой могут существенно различаться концентрацией дисперсной фазы. Область менаду свободной и плотной упаковкой является областью пластического течения. Поскольку эффективный объем частиц суспензии возрастает благодаря образованию поверхностных слоев и плеиок, то область пластического течения оказывается еще шире. Агрегативно устойчивые системы в отличие от неустойчивых систем практически не образуют структуру, отвечающую свободной упаковке, и поэтому у них мал концентрационный интервал проявления пластических свойств. Пластические свойства этих систем почти всегда проявляются прн концентрациях, близких к плотной упаковке с учетом поверхностных слоев. [c.376]

    Толщина прослоек уменьшается с увеличением концентрации дисперсной фазы, что соответственно приводит к увеличению прочности структуры, но к уменьшению ее пластических свойств. Как известно, лиофильность поверхности частиц можно изменять с помощью поверхностно-активных веществ, в том числе высокомолекулярных. ПАВ и ВМС могут изменять структуру межчастичных прослоек. Лиофильность поверхности частиц возрастает с развитием двойных электрических слоев, их диффузной части, что обеспечивается заменой всех катионов на поверхности частиц однозарядными катионами щелочных металлов. Этот метод широко используется, например, для увеличения текучести глинистых су -пеизий. [c.384]

    Прочностные свойства резко возрастают за счет образования пространственной сетки из частнц дисперсной фазы. Чем анизо-метричнее форма частнц, тем при меньшей их концентрации образуется пространственная структура. Особенно эффективны в этом отношении волокнистые наполнители, широко используемые в качестве армирующего компонента. Основную часть механических нагрузок на такой материал принимает на себя пространственная сетка из наполнителя, матрица передает эти нагрузки от частицы к частице, и если она мягче наполнителя, то служит кроме того, в качестве амортизатора. Прочностные, упругие и другие механические свойства пространственной сетки, безусловно, зависят от природы наполнителя, дисперсности и формы его частиц. Например, минеральные наполнители увеличивают жесткость материала, рост дисперсности волокон приводит к увеличению упругой деформации. Каучукоподобные наполнители придают материалу эластичность, ударную прочность. Большое значение для долгосрочной службы композиционных материалов имеет снятие внутренних напряжений, способствующих преждевременному разрушению материала. Если в бетонах внутренние наиряжения понижают с помощью вибрации прн твердении или добавлением ПАВ, то у металлов это достигается введением специальных модификаторов (обычно поверхностно-активных), в том числе гетерофазных включений. [c.393]

    Для предотвращения агрегации частиц и защиты гидрозолей и гидросуспензий от коагулирующего действия электролитов применяют высокомолекулярные соединения и коллоидные ПАВ, растворимые в воде, например белки, мыла, крахмал, декстрин. Их стабилизирующее действие основано на образовании на поверхности частиц дисперсной фазы адсорбционных гелеобразных пленок и связано как с уменьшением межфазного натяжения, так и со структурно-механическими свойствами поверхностных слоев. [c.164]

    Массо- и теплообмен в колоннах с насадкой характеризуются не только явлениями молекулярной диффузии, определяющимися физическими свойствами фаз, но и гидродинамическими условиями работы колонны, которые определяют турбулентность потоков. В зависимости от скорости потока в колонне возможны три гидродинамических режима ламинарный, промежуточный и турбулентный,— при которых поток пара является сплошным, непрерывным и заполняет свободный объем насадки, не занятый жид1костью, в то время как жидкость стекает лишь по поверхности насадки. Дальнейшее развитие турбулентного движения может привести к преодолению сил поверхностного натяжения и нарушению граничной поверхности между потоками жидкости и пара. При этом газовые вихри проникают в поток жидкости, происходит эмульгирование жидкости паром, и массообмен между фазами резко возрастает. В случае эмульгирования жидкость распределяется не по насадке, а заполняет весь ее свободный объем, не занятый паром жидкость образует сплошную фазу, а газ — дисперсную фазу, распределенную в жидкости, т. е. происходит инверсия фаз. [c.302]

    Дисперсная фаза. Температурные пределы применения смазок во многом определяются температурами плавления и разложения загустителя, его растворимостью в масле и концентрацией в смазке. От природы загустителя зависят антифрикционные и защитные свойства, водостойкость, коллоидная, механическая и антиокислительная стабильности смазок. Так, мьиа, являясь поверхностно-активными веществами, вьшолняют в смазках одновременно функции загустителя, противоизносного и противозадирного компонентов. При этом модифицирующее действие мыл на поверхности трения связано с поверхностно-молекулярным, а не химическим взаимодействием, что характерно для фосфор-, серо- и хлорсодержащих присадок. [c.311]

    Высокий уровень защитных свойств позволяет рекомендовать вводить отработанные пластичные смазки в состав антикоррозионных покрытий вместо используемых в таких композициях мыл (НГМ-МЛ и др.). Для предотвращения слипания и смерзания влажных горных пород в процессе транспортировки и разгрузки возможно применение так называемых профилактических смазок, дисперсионной средой в которых являются легкие газойли (180— 350°С) деструктивных процессов нефтепереработки, а дисперсной фазой — обладающие высокой поверхностной активностью крекинг-остатки дистиллятного или остаточного происхож,цения. Высокое содержание ПАВ в отработанных пластичных смазках (мыла, продукты окисления, присадки) позволяет использовать последние в качестве эффективных добавок к указанным продуктам. [c.321]

    В заключение остановимся на проблеме модификации дисперсионной среды битумных эмульсий. Данный вопрос применительно к битумным эмульсиям в России до настоящего времени не изучался, да и в зарубежных источниках содержатся лишь отрывочные данные, что свидетельствует о неизученности данного направления. Справедливости ради следует отметить, что некоторыми зарубежными фирмами запатентованы составы битумных эмульсий, в которых соответствующим образом модифицированы и дисперсная фаза и дисперсионная среда. В частности, фирма Smid Hollander (Голландия) имеет патент на эмульсию для поверхностной обработки, в составе которой есть и специальный латекс " для битума и специальный латекс для водной фазы. Однако ни о составе, ни о свойствах, ни о задачах применения ничего не известно, вероятно, в связи с патентной политикой фирмы. Практически все наработки относительно модификации касаются именно дисперсной фазы битумных эмульсий , но не дисперсионной среды. [c.64]

    Принимая во внимание многочисленные литературные данные, касающиеся экспериментальных и теоретических исследований поведения фуллере-яов в растворах, можно отметать, что многие необычные оптические, термоди-яамические, кинетические и другие свойства этого объекта объясняются явле-яием образования кластеров фуллеренов в растворах. Таким образом, рассматривая с единых позиций поведение фуллеренов в растворах, можно утверждать, что феномен кластерного состояния фуллеренов в среде растворителя является основополагающим и обусловливающим всю совокупность свойств, характеризующих данные системы. Рассматривая систему фуллерены - растворитель в целом, справедливо заметить, что такие термины, как фуллерены в растворах , раствор фуллеренов и им подобные, являются не вполне уместными для ее писания. Тем более неприемлемо применение к ним закономерностей, описывающих неведение нормальных растворов. Состояние рассматриваемой систе-иы можно более точно определить как наносуспензия , где присутствуют сво-гго рода дисперсная фаза - фуллерены и дисперсионная среда - органический растворитель. Насколько известно, это единственная ситуация, где размеры частиц дисперсной фазы имеют такие малые размеры (до 2,5 нм для С60 [31 ] и цо 3 нм для С70 [32]). Вполне вероятно, что для всестороннего описания пове-цения данных систем потребуется учет совокупности закономерностей, описывающих дисперсные системы, нормальные растворы, кластерное состояние вещества, поверхностные явления, поведение систем в критических точках (при описании образования и роста фрактальных кластеров фуллеренов в растворах) и др. [c.53]

    К таким определениям относится критическая концентрация мицеллообразова-ния. Несмотря на то что в нефтяных системах мицелла — понятие условное, и даже в некоторой степени неприемлемое, именно этот термин употребляется для описания изменения свойств нефтяных систем при изменении концентрации дисперсной фазы. Критической концентрацией мицеллообразования в классическом определении считается концентрация поверхностно-активного вещества в растворе, при которой наблюдается резкий рост образования мицелл, фиксируемый по изменению свойств раствора. В нефтяных системах под критической концентрацией мицеллообразования, понимают значение концентрации дисперсной фазы, или некоторой добавки в систему, выше которой в системе наблюдается лавинообразный рост числа структурных образований, который фиксируется по изменению физико-химических свойств системы. [c.27]

    Изучение поверхностных явлений и проявления межмолекулярных сил на границе раздела фаз в нефтяной дисперсной системе необходимо проводить комплексно, прежде всего с учетом химической природы системы. Одним из наиболее важных факторов, определяющих свойства нефтяных дисперсных систем, является состав дисперсионной среды. В зависимости от природы состав/лющих ее компонентов проявляются различные конформации и размеры частиц или агрегатов дисперсной фазы, их асимметрия и т.д. [c.40]

    Решающее влияние на толщину межфазного слоя оказывает присутствие в системе поверхностно-активных веществ. В этом случае в рассмотрение включается сорбционный слой поверхностно-активных веществ и возникает необходимость фиксирования некоторой более четкой границы раздела фаз, образованной в простейшем случае за счет мономолекулярной сорбции поверхностно-активного вещества на элементах одной из фаз, выступающей в данном случае уже в качестве дисперсной. В общем случае за поверхность раздела в подобных нефтяных дисперсных системах может быть принят поверхностный сорбционный слой, а также часть прилегающей к нему объемной фазы. Сформированную таким образом поверхность раздела возможно рассматривать как сорбционно-сольватный слой дисперстюй фазы, или граничный переходный слой между дисперсной фазой и дисперсионной средой, свойства которого изменяются под влиянием поверхностной активности компонентов дисперсной системы. Сорбционно-сольватный граничный слой можно рассматривать как более концентрированный раствор дисперсной фазы по сравнению с раствором в объеме. [c.41]

    Решающее влияние на технологические процессы добычи, транспорта и переработки нефтяных дисперсных систем оказывают фазовые превращения, происходящие в различных реальных внешних условиях, Полиэкстремальные зависимости физико-химических свойств от внешних условий проявляются вследствие аналогичного изменения межмолекулярных взаимодействий между основными структурообразующими компонентами системы. Основной вклад в свойства углеводородных дисперсий вносят фазовые и полиморфные превращения высокомолекулярных соединений. Выявление и регулирование указанных превращений явл51ется важной прикладной задачей нефтяной отрасли. Особый интерес представляет изучение фазовых и полиморфных превращений в нефтяных дисперсных системах в присугствии поверхностно-активных веществ. Последние широко употребляются для регулирования процессов структурообразования в нефтяных дисперсных системах. В настоящее время проводятся интенсивные исследования влияния природы, концентрации и кристаллического строения дисперсной фазы на изменение межмолеку. ярного и контактного взаимодействия между элементами нефтяных дисперсных систем, взаимосвязи параметров фазовых и полиморфных переходов в этих системах, протекающих при изменении внешних условий их существования и различных воздействиях, с изменением физических и структурно-механических свойств рассматриваемых систем. [c.138]

    Дисперсная фаза структурированных НДС в ядерной части на определенном этапе представлена газопаровыми пузырьками, капельками изотропной и анизотропной жидкости, кристаллами, ассоциатами и комплексами асфальтосмолистых веществ и других ВМС, кристаллитами углерода. Во многих случаях эти виды ДФ могут находиться в структурированных НДС одновременно. При этом следу ст подчеркнуть, что частицы ДФ данного вида, находящиеся в конденсированном состоянии, могут бьггь представлены органическими соединениями различных классов или относящимися только к одному классу, гомологическому ряду или группе. Так, кристаллическое ядро ДФ может быть образовано парафиновыми, ароматическими или смешанными углеводородами в таких системах как нефть, дистиллятные и остаточные продукты переработки нефти и газа, битумы и пеки, находящиеся при температурах, более низких, чем температура их застывания или стеклования, или сетчатыми ароматическими макромолекулами в графите. Состав, структура, размеры, объемные и поверхностные свойства ядерной части частиц ДФ, конкретный набор и концентрация различных видов ДФ в данной структурированной НДС в процессах получения нефтяного углерода определяются многими факторами природа сырья, температурно-временной режим и давление карбонизации, среда, степень превращения сырья, технологические и аппаратурные особенности процесса, тип и интенсивность внешних энергетических воздействий и т.д. [c.108]


Смотреть страницы где упоминается термин Дисперсная фаза поверхностные свойства: [c.193]    [c.277]    [c.10]    [c.132]    [c.175]    [c.166]    [c.17]    [c.115]   
Физикохимия неорганических полимерных и композиционных материалов (1990) -- [ c.116 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсная фаза

Поверхностные свойства



© 2025 chem21.info Реклама на сайте