Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бериллий переработка

    В других гардеробных спецодежда и домашняя одежда (иногда белье) хранятся в отдельных изолированных помещениях, между которыми находится душевая, тогда рабочий, выходя из цеха, снимает загрязненную спецодежду и белье, переходит в душевую и- моется, затем проходит в помещение, где хранятся домашняя одежда и белье, и надевает их. Такая система гарантирует, что ядовитые вещества, загрязнившие спецодежду, не будут вынесены из производства. Она применяется на производствах, связанных с обработкой ядовитых веществ или с выделением ядовитой или сильно раздражающей пыли (процессы с применением анилина, свинца, мышьяка, ртути, бериллия, фосфора и их соединений) в производствах с особо сильным выделением загрязняющей пыли (размол пылящих веществ, производство и переработка сажи), а также там, где работа связана с ионизирующими излучениями. [c.132]


    Важнейшие области применения бериллия. Для бериллия характер-терен значительный разрыв между временем его открытия А. Вокеленом в 1798 г. и началом широкого промышленного применения в 30-х годах текущего столетия. Причина тому — трудности, связанные не только с переработкой бериллиевого сырья, но и со сложностью получения чистого металла, с его химической активностью, особенно большим сродством к газам, в первую очередь к кислороду и азоту. Отсутствие чистого бериллия как объекта исследования не позволяло долгое время оценить его замечательные свойства, а следовательно, и с наибольшей полнотой определить области его применения. Долгое время применение бериллия было связано лишь с использованием свойств его окиси, употреблявшейся для изготовления огнеупорных изделий, высококачественного фарфора для электроизоляторов, газокалильных колпачков и специальных стекол [3, 7, 16]. [c.186]

    Все применяемые в настоящее время методы получения самого металла и его соединений из рудных концентратов основаны на отделении бериллия от сопутствующих элементов (в первую очередь от алюминия, железа и кремния). Химические основы методов изложены в предыдущем разделе. Эти методы были разработаны в свое время применительно к бериллу. Но они могут быть использованы и для переработки других минералов бериллия, имеющих в настоящее время промышленное значение, так как за исключением хризоберилла все эти минералы являются силикатами и в достаточной степени однотипны по основным примесям. [c.192]

    Сульфатный метод переработки берилловых концентратов. Сульфатный метод сводится к извлечению бериллия и алюминия в раствор с помощью серной кислоты (ЗЮг оказьшается в нерастворенном остатке) и к последующему разделению бериллия и алюминия, основанному на различном поведении их сульфатов в растворе сульфата аммония. В связи с тем, что берилл взаимодействует с серной кислотой очень медленно, его подвергают предварительной обработке, щелочному или термическому активированию. [c.197]

    Литиевые руды гранитных пегматитов чаще всего комплексные— они содержат другие полезные минералы таких элементов, как цезий (поллуцит), бериллий (берилл), олово (касситерит), ниобий и тантал (колумбит и танталит), а иногда и драгоценные камни. Так как число попутно добываемых ценных элементов может быть значительным, то даже при низком содержании каждого из них в отдельности комплексная переработка сырья месторождений гранитных пегматитов может быть вполне целесообразной [39]. [c.180]

    Русановым и Алексеевой [475, 500] разработан метод определения бериллия в минералах, рудах и продуктах переработки бериллиевого сырья, который нашел широкое применение. Существует экспрессный вариант этого метода для полуколичественных определений бериллия. [c.104]


    Определение бериллия в рудах и продуктах их переработки с 2,2 - д им ет и л г е к с а н д и о н о м - 3,5 [652] [c.168]

    На рис. 26 приведена технологическая схема переработки берилла разложением его серной кислотой. Извлечение бериллия в гидроокись по зтой схеме достигает 97%. [c.108]

Рис. 26. Технологическая схема переработки берилла разложением его серной кислотой. Рис. 26. <a href="/info/654497">Технологическая схема переработки</a> <a href="/info/442754">берилла разложением</a> его серной кислотой.
    Химический состав разновидностей берилла (масс. %), получаемого комплексной переработкой пегматитовых руд [c.111]

    Большие количества фторсодержащих газов выделяются при производстве алюминия путем электролиза глинозема в среде расплавленного криолита. На новейших установках этот фтор улавливают для возвращения его в цикл иа восстановление. Вредные газы, содержащие фтор, образуются при химической переработке бериллиевой руды в металлический бериллий действием паров фтора, при применении фторсодержащих ингибиторов и флюсов в производстве и литье магния и других цветных металлов, при получении сплавов. в электрических печах и во многих других плавильных процессах. Газы некоторых печей, используемых для выплавки цинка, также загрязняют атмосферу фтором. [c.20]

    Почти все эти минералы содержат, помимо РЗЭ, другие редкие металлы — торий, уран, ниобий, тантал, бериллий — и подвергаются поэтому комплексной переработке, рассчитанной на извлечение всех ценных компонентов. Кроме того, РЗЭ встречаются в различных других минералах и рудах — титановых, циркониевых, некоторых железных, свинцовых, оловянных, молибденовых и вольфрамовых, из которых они могут быть извлечены попутно. [c.305]

    Предложены также методы осаждения скандия из растворов, получаемых при переработке берилловых концентратов [805]. Эти растворы содержат обычно до 30 г/л ВеО, 50 г/л АЬОз, 20 г/л РегОз. Алюминий из них удаляют в виде аммиачных квасцов. Опыты показали, что скандий не захватывается ни осадком квасцов, ни осадком сульфата бериллия. В то же время если нейтрализовать кислые растворы щелочью до pH около 6, то скандий выпадает совместно с железом, а алюминий и бериллий переходят в щелочной раствор. Потери скандия с этим раствором могут составлять до 15%. [c.309]

    Бериллий непосредственно соединяется с галогенами с фтором пр,и комнатной температуре, с хлором, бромом и йодом при нагревании. Фторид и хлорид бериллия являются важнейшими его соединениями, используемыми в процессе переработки бериллиевых руд. [c.437]

    Наиболее богатые берилловые концентраты содержат от 11 до 13% бериллия в виде ВеО. Это, по существу, чистый берилл. Содержание 02 и А Оз поэтому (см. табл. 65) не может быть ниже 60—65 и 18—20% соответственно. Этим определяется дальнейшая переработка концентрата, основной задачей которой является отделение сравнительно малого количества бериллия от подавляющих количеств кремнезема и глинозема. [c.443]

    Возможны и другие способы переработки гидрата окиси бериллия на те или другие его соединения, например растворение его не в серной, а в плавиковой кислоте для получения фтористых соединений бериллия (см. ниже получение металлического бериллия). [c.444]

    Продуктом переработки берилловых концентратов является, таким образом, окись бериллия. Дальнейшая обработка ее зависит от того, каким методом предполагают получать металлический бериллий. Непосредственно восстановлением окиси нельзя получить чистый бериллий. [c.445]

    Специальные главы посвящены химии урана и его соединений, химии растворов урана, плутония и трансурановых элементов, химии конструкционных материалов циркония, гафния, бериллия, а также химии тяжелой воды, органических теплоносителей и графита. Некоторые главы посвящены переработке и захоронению радиоактивных отходов и разделению изотопов. [c.4]

    В монографии изложены свойства основных соединений бериллия- как неорганических, так и органических. Наиболее подробно изложены свойства галогенидов бериллия. Отдельная глава посвящена технологии переработки бериллиевых руд до металлического бериллия. [c.264]

    В настоящее время экстракцию широко используют для концентрирования одного или нескольких компонентов, разделения близких по свойствам веществ и очистки вещества. Ее применяют в процессах переработки нефти для разделения ароматических и алифатических углеводородов, в химической технологии, в том числе для разделения изомеров, обезвоживания уксусной кислоты, при получении различных лекарственных препаратов, например антибиотиков, и др. Особенно успешно используется экстракция в гидрометаллургии в технологии урана, бериллия, меди, для разделения близких по свойствам металлов — редкоземельных элементов (циркония и гафния, тантала и ниобия), никеля и кобальта и т. д. Экстракционные методы применяют для опреснения воды, переработки промышленных сбросов с целью их обезвреживания, а также использования их полезных компонентов. Наконец, экстракция широко используется в аналитической химии и как метод физико-химического исследования. В настоящее время на основе химических и физико-химических представлений можно подобрать экстрагент для извлечения практически любого органического или неорганического соединения. [c.6]


    Центральными вопросами такого учебника являются методы получения материалов, используемых в ядерной технике, но не находивших ранее широкого применения в других областях (уран, торий, цирконий, бериллий, дейтерий, уран-235), а также методы переработки облученных материалов. Изложение соответствующих технологических процессов сопровождается кратким описанием применяемой аппаратуры. При этом авторы особое внимание уделяют вопросу применения экстракции в химической технологии материалов для ядерной энергетики, а также разделению изотопов как технологическим процессам, которые приобрели промышленное значение в связи с использованием ядер ной энергии. [c.3]

    Растворение основного карбоната бериллия в избытке (ЫН4)2СОз— реакция, важная для технологии переработки берилла. Таким способом Ве (И) отделяют от А1 (III), который растворимых карбонатных комплексов не образует и остается при такой обработке в форме гидроокиси. Раствор (ЫН4)2 [Ве(СОз)2] отделяют от А1(0Н)з и подвергают нагреванию. При этом карбонат аммония улетучивается вследствие диссоциации (НН4)2С0зч=ь2ЫНз + С02- -Н20 и равновесие [c.39]

    Переработка берилла. Основное сырье бериллиевой промышленности — минерал берилл (алюмосиликат бериллия) Вез [AbSieOis] — перерабатывают для получения металлического Ве несколькими способами. Одна из главных задач, решаемых технологией переработки берилла — отделение Ве от А1, близкого по свойствам. [c.46]

    Сернокислотная переработка берилла. После разрушения берилла обработкой концентрированной H2SO4 при температуре —300 С образовавшийся спек выщелачивают водой, К перешедшим в водный раствор сульфатам Ве и А1 добавляют растворимую в воде соль калия. В результате выкристаллизовываются относительно плохо растворимые алюмокалиевые квасцы КА1 (504)2-I2H2O. Так отделяют основнуго часть алюминия, дальнейшую очистку проводят, как в способе Копо. [c.46]

    Щелочная переработка. Кристаллическая структура берилла разрушается при спекании его с поташом, К2СО3. Образовавшиеся алюминаты и бериллаты выщелачивают водой, а затем подвергают обработке H2SO4, Это позволяет отделить кремневую кислоту, а затем алюминий в форме квасцов. Дальнейшая переработка — как в предыдущих случаях. [c.46]

    Главное промышленное значение имеют месторождения гранитных пегматитов натро-литиевого типа, в которых литий связан со всеми рассмотренными минералами. Из этих пегматитов важнейшими являются сподуменовые и петалито-лепидолитовые [10, 94]. Литиевые руды гранитных пегматитов чаще всего комплексные — содержат другие полезные минералы таких элементов, как цезий (поллуцит), бериллий (берилл), ниобий и тантал (колумбит и танталит), олово (касситерит), а иногда и драгоценные камни (полихромные и розовые турмалины, воробьевит и кунцит). Так как число попутно добываемых ценных элементов может быть значительным, то даже при низком содержании каждого из них в отдельности комплексная переработка сырья месторождений гранитных пегматитов может быть вполне целесообразной [c.31]

    Как можно было заметить, большинство рубидийсодержащих источников, по крайней мере в самое ближайшее время, не может рассматриваться в качестве объектов для одновременного извлечения и цезия. Однако для его попутного извлечения используется не только лепидолит, но и берилл [6—8]. Основное же значение для получения соединений цезия приобрел в настоящее время цезиевый минерал поллуцит, промышленная переработка которого осуществляется в ряде стран [7, 8]. [c.118]

    Исследования последних ле. позволили применить к мелкокристаллическим берилловым и сподумен-берилловым рудам флотацию. Это намного увеличило добычу берилла как за счет большего извлечения, так и за счет переработки ранее неиспользовавшихся мелкокристаллических руд и отвалов ручной рудоотборки. При обогащении сподумен-берилловых руд [60, 62] вначале производят флотацию сподумена. Ее хвосты, представляющие собой черновой берилловый концентрат, флотируют затем по кислотной или щелочной схеме. Кислотная схема предусматривает использование плавиковой кислоты для депрессиро-вания пустой породы и активации берилла и катионного реагента в качестве собирателя. По щелочной схеме депрессор пустой породы — [c.191]

    Совершенствование процесса выщелачивания идет по пути поиска растворителей, обеспечивающих избирательность перехода бериллия в раствор или же дающих возможность совместить выщелачивание с получением бериллия в необходимой форме, что позволяет исключить дополнительные операции по переработке окиси бериллия. Именно эту цель преследует предложение выщелачивать спек концентрированным раствором (NH4)2SiFg с получением раствора фторобериллата аммония, используемого для производства металлического бериллия [3]. Выщелачивая спек 0,1 н. раствором NaOH или КОН, извлекают бериллий в раствор в виде бериллатов с большой избирательностью и получают Ве(0Н)2 высокой чистоты (99%) с выходом 95% [681. [c.194]

    Полученные при выщелачивании фторобериллатные растворы содержат значительно меньше примесей, чем растворы от выщелачивания продуктов сульфатизации берилла. Поэтому их обычно не подвергают специальной очистке, а сразу же направляют на дальнейшую переработку. В схемах, предусматривающих получение бериллия в виде окиси или гидроокиси, следующий этап — это гидролитическое осаждение бериллия, в процессе которого может быть произведено попутное отделение от таких примесей, как железо и алюминий. При осаждении гидроокиси необходимо учитывать способность ее выделяться в зависимости от условий осаждения в аморфной или кристаллической (хорошо фильтруемой) (3-форме. [c.194]

    Переработка активированного берилла. Для дальнейшей переработки берилла независимо от способа активирования обычно используют одинаковые схемы, так как в обоих случаях при обработке серной кислотой бериллий, а также А1 и Fe переходят в раствор в виде сульфатов. Различие заключается лишь в том, что термически активированный берилл поддается воздействию только концентрированной H2SO4, а продукт щелочной обработки берилла растворим и в разбавленной кислоте. На первый взгляд, выгоднее использовать продукт щелочной обработки, но в действительности в этом случае приходится тратить значительно больше кислоты, так как часть ее идет на нейтрализацию щелочи, что видно из уравнений реакций для термообработанного берилла [c.198]

    В качестве примера практического применения сернокислотного метода переработки берилла на рис. 31 приведена технологическая схема производства гидроокиси бериллия, используемая фирмой Браш бериллиум . Активирование берилла перед сернокислотной обработкой производится по этой схеме термическим методом. Концентрат, предварительно нагретый, плавят при 1700°С. Плавы выливают в закалочную ванну с водой. Классификация на грохоте стекловидных агломератов, полученных при закалке, позволяет отделить куски размером более 13 мм, в которых возможна рекристаллизация (что затруднит последующее взаимодействие с серной кислотой). Эти куски направляются в начало процесса. Отсеянный спек подвергают термообработке при 900° во вращающейся печи. Затем его измельчают в шаровой мельнице, которая работает в замкнутом цикле с воздушным классификатором. Мокрое измельчение не применяется, чтобы при сульфатизации не разбавлять серную кислоту. Измельченный спек через дозатор поступает в железный аппарат предварительного смешения. Туда же поступает серная кислота (93%) в количестве, несколько превышающем то, которое необходимо для образования сульфатов бериллия и алюминия. Избыток серной кислоты нужен в дальнейшем для получения сульфата аммония при взаимодействии с аммиаком. Кислая пульпа впрыскивается тонкой непрерывной струей в стальной барабан, нагреваемый газом до 250—300°. Пульпа попадает на его раскаленные стенки. При этом почти мгновенно сульфатизируются ВеО и AI2O3. Полнота сульфатизации 93—95%. Такой метод значительно продуктивнее одновременной сульфатизации больших количеств окислов. Отходящие газы пропускают через циклон, где оседают тонкие [c.199]

    Сырьевыми источниками получения скандия можно также считать минералы РЗЭ иттриевой подгруппы (эвксенит, хлопинит и др.), содержащие в некоторых случаях десятые доли процента ЗсгОз, а также бериллы и цирконы [10]. По данным ряда авторов, цирконы и другие циркониевые минералы содержат заметное количество скандия (иногда 0,001—0,08%). Учитывая растущие масштабы переработки циркониевых концентратов (только в США в 1966 г. переработано более 50 тыс. т), можно отнести их к существенным сырьевым источникам скандия [2]. Крупным сырьевым источником скандия могут оказаться бокситы, содержащие в некоторых случаях 0,001—0,01% ЗсаОз. Переработка 30 млн. т бокситов может дать 150—600 т скандия [3]. Потенциальным источником скандия считают угли, в золе которых содержится чаще 0,001%, а подчас 0,01% 5с [2]. Представляют интерес также некоторые слюды, часто обогащенные скандием. Встречаются мусковиты, содержащие до 0,2—0,4% ЗсгОз [13]. [c.18]

    Экстракция бериллия из кислых сульфатных растворов представляет интерес с точки зрения извлечения его из щелоков, получающихся при переработке флотационных концентратов [600а, 6006]. [c.136]

    В виде комплексной соли гексаминкобальтихлорида и основного карбоната бериллия (см. табл. 27) и объемный арсенатный метод 387]. Определение бериллия в бронзах объемным арсенатным методом аналогично определению бериллия этим методом в минералах и продуктах их переработки, см. стр. 169. Метод пригоден для определения >2% бериллия. [c.175]

    Основные промышленные минералы бериллия очень трудно обогатимы, так как По своим свойствам они близки к минералам пустой породы. Наиболее перспективным методом обогащения мелковкрапленных берилловых руд является флотация. Собиратели могут быть как анионные (олеат натрия, олеиновая кислота, продукты переработки нефти и др.), так и катионные (лауриламин и др.). Эти собиратели без избирательно действующих регуляторов и депрессоров не обеспечивают хорошего отделения берилла от минералов пустой породы. Наиболее полно изучено действие олеиновой кислоты, в присутствии которой сильными депрессорами являются серная кислота и жидкое стекло. Активаторами берилла являются плавиковая кислота, едкий натр, сода. [c.41]

    Однако обычные методы хлорирования имеют определеннь недостатки и малопригодны для переработки химически устонч вых минералов типа берилла, циркона и т. п. В этом отношенч представляет несомненный интерес хлорирование в расплаве хЛ ридов металлов I и II групп периодической системы, успешно пр  [c.90]

    Таким образом для промышленного получения скандия исходят не из его собственных минералов, а из упомянутых выше рудных минералов олова, вольфрама, бериллия, циркония, РЗЭ, при переработке которых скандий может быть извлечен попутно. Так, например, при переработке вольфрамитовых руд получается концентрат, содержащий 0,02% скандия, а в отходах от переработки концентрата содержание скандия повышается до 0,04—0,05%i в касситеритовых концентратах содержание скандия ниже 0,02%, а в шлаках оловянных заводов 0,1% [634]. Недавно появилось сообщение о том, что скандий может быть извлечен попутно из урановых руд [794]. [c.306]

    Бериллий [7, 51, 224]—легкий серебристый металл. Его атомный вес 9,01, порядковый номер в таблице Менделеева— 4, Плотность бериллия 1,85 г/см , т.е. заметно меньше, чем у алюминия (2,7 г/см ), и близок к магник> (1,74 г/см ). Бериллий распространен в земной коре гораздо меньше, чем алюминий и магний (7,51 % А1, 1,94%. Mg, 0,0005 %) Be). Вследствие довольно сложной его переработки, бериллий является пока еще относительно дорогим металлом, хотя уже в заметных количествах производится промышленностью. Применению металлического бериллия в технике способствует особое сочетание его физических и химических свойств. Бериллий имеет высокую-температуру плавления (1284 °С) и значительные прочностные (0в==6ОО—650 МПа) и упругие свойства (модуль, упругости = 28000- 37000 МПа). [c.275]

    Измерение потока фотоиейтронов, испускаемых бериллием под действием у-лучей, было успешно применено геологами в полевых условиях при обогащении руд, а также химиками в качестве вспомогательного специфического простого, быстрого и не разрушающего образец средства анализа. Хотя этот метод не может конкурировать со спектрометрическим методом при измерении содержания бериллия в воздухе, тем не менее его развитие будет способствовать решению проблем, связанных с быстрым определением загрязнений поверхностей бериллием. Возможное увеличение чувствительности портативных приборов позволит найти более полное решение вопроса. Очевидно, описываемая методика может быть применена для непосредственного контроля непрерывных процессов как при работе с жидкостями (например, при процессах химического экстрагирования или при переработке зашлакованных топливных элементов с бериллиевым покрытием), так и ири работе с газами (например, при охлаждении новейших высокотемпературных реакторов, имеющих топливные элементы с бериллиевым покрытием). [c.184]


Смотреть страницы где упоминается термин Бериллий переработка: [c.90]    [c.285]    [c.194]    [c.263]    [c.367]    [c.306]    [c.388]   
Неорганическая химия Том 1 (1971) -- [ c.148 , c.150 ]




ПОИСК







© 2024 chem21.info Реклама на сайте