Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оже-спектроскопия рентгенография

    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]


    В практикуме описаны лабораторные работы, охватывающие весь курс физи-ческой химии. Каждой работе предпослано теоретическое введение. Особое внимание обращено на современные методы исследования спектроскопию, рентгенографию, электронографию и др., а также рассмотрены классические методы исследования криоскопия, эбуллиоскопия, колориметрия, хроматография и т. п. [c.2]

    Успехи в области стереохимии связаны с достижениями теории химической связи и физических методов исследования молекул (спектроскопия, рентгенография, ЯМР и др.). [c.108]

    Несомненно, что в ближайшие годы химия инертных газов станет одним из крупных разделов неорганической химии. К изучению этих новых соединений привлечены все современные методы исследования вещества масс-спектрография, кристаллохимия, радиохимия, магнитные измерения, спектры поглощения и комбинационного рассеяния, инфракрасная спектроскопия, рентгенография и др. [c.639]

    Исследование структуры молекул и их ассоциатов в жидком и твердом состоянии проводится, кроме рассмотренных спектроскопических методов, основанных на взаимодействии частиц с электромагнитным полем, еще многими десятками физических методов, базирующихся как на взаимодействии с электромагнитным излучением (микроволновая спектроскопия, спектроскопия комбинационного рассеяния, у-резонансная спектроскопия, рентгенография, электроно- и нейтронография, люминесцентная спектроскопия, рефрактометрия, поляриметрия), так и с другими типами полей, в частности с электрическим полем (полярография, кондуктометрия, потенциометрия и др.), гравитационным полем. [c.132]

    Рядом исследователей проведено изучение модификаций кристаллической структуры триацетата целлюлозы с помощью электронной микроскопии, ИК-спектроскопии, рентгенографии и электронографии [34, 36, 37, 108, 166, 195, 227]. Проводились лабораторные эксперименты по улучшению некоторых свойств ацетатов целлюлозы (способности к окрашиванию, прочности, пластичности) путем получения смешанных эфиров ацетатов с поперечными сшив- [c.391]

    Изучению физических свойств простых полиэфиров посвящено большое число исследований з т-зет з ряде статей приведены результаты структурных исследований полиэфиров методами ИК-спектроскопии, рентгенографии, ЭПР и др. згт-ззе [c.162]

    Несмотря на то, что за последние 15—20 лет в практику работы исследовательских лабораторий внедрены более совершенные методы исследования структуры органических соединений — инфракрасная спектроскопия, рентгенография и другие, определение молекулярных рефракций и теперь оказывает существенную помощь в установлении структуры органических соединений простыми средствами. [c.405]


    Свойства целлюлозы определяются не только строением ее отдельных цепных молекул, но и взаимным их расположением, т. е. надмолекулярной и морфологической структурой волокна. Изучение строения целлюлозного волокна в основном при помощи физических методов исследования (метода двойного лучепреломления, микроскопии и электронной микроскопии, инфракрасной спектроскопии, рентгенографии и электронографии) привело к созданию теории ориентированного (аморфно-кри-сталлического) строения целлюлозы. В клеточных стенках древесины целлюлоза находится в виде тончайших волоконцев — целлюлозных микрофибрилл. Длинные цепные молекулы целлюлозы проходят вдоль микрофибрилл на ряде участков ориентированно (т. е. параллельно друг другу и на близких расстояниях), а на ряде других участков их ориентация менее совершенна. Участки целлюлозы, в которых существует совершенный порядок в трех пространственных направлениях (т. е. совершенная ориентация), называют ориентированными участками, кристаллитами, или мицеллами (в современном понимании). Длина этих участков около 500—600 А, ширина 50— 100 А. Участки, в которых совершенный порядок отсутствует и сохраняется лишь общая продольная направленность цепей, называются неориентированными, или аморфными (рис. 35). Ориентация цепей в кристаллитах поддерживается за счет сил межмолекулярного взаимодействия — сил Ван-дер-Ваальса и, [c.67]

    Рентгенография, электронография и спектроскопия приобретают большое значение. Их преимущество перед химическими методами заключается в возможности применения их непосредственно к углям, причем последние не претерпевают каких-либо изменений. К сожалению, полученные результаты при этих методах не всегда можно точно и однозначно интерпретировать. [c.7]

    Как уже отмечалось, повышенная растворимость олеофильных веществ в водных растворах ПАВ обусловлена связыванием этих веществ мицеллами. При этом истинная растворимость в водной (межмицеллярной) фазе практически не изменяется по сравнению с таковой в чистой воде. Для понимания механизма процессов, протекающих в системах раствор ПАВ — солюбилизат (эмульсионная полимеризация, мицеллярный катализ и др.), важно знать, где располагаются и как ориентируются солюбилизированные молекулы в мицеллах. Для выяснения этого вопроса привлекались данные рентгенографии, УФ- и ЯМР-спектроскопии, электронного парамагнитного резонанса и других физических методов исследования. [c.70]

    Позже получила развитие статистическая термодинамика, основанная на молекулярно-кинетических представлениях и в первую очередь на модели идеального газа. В настоящее время методы статистической термодинамики широко используют данные о строении молекулы, вещества, находимые как опытным путем с помощью спектроскопии, электронографии, рентгенографии и других физических методов, так и теоретически с помощью квантовой механики. [c.7]

    Физическими можно назвать методы измерения свойств, относящихся к индивидуальным соединениям. Их применяли вначале для исследования кристаллических веществ, затем стали исследовать и растворы, выделяя параметры, относящиеся к индивидуальным комплексам в растворе. Такие исследования позволяют получить сведения о составе и строении внутренней сферы комплексов, об их симметрии, о распределении зарядов, типе и характере связи, полностью расшифровать структуру кристаллических комплексов и т. д. К физическим методам относятся дифракционные (рентгенография, электронография, нейтронография), спектральные методы в широком диапазоне длин волн (от УФ до радиочастотной), гамма-резонансная, рентгеноэлектронная и фотоэлектронная спектроскопия, исследования магнитной восприимчивости и др. [c.199]

    Строение можно изучать химическими методами — второе важнейшее положение Бутлерова — также не потеряло своего значения в наши дни. Изучение строения органических соединений — природных и синтетических — было и остается основной задачей органической химии. При этом, как и во времена А. М. Бутлерова, мы пользуемся методами химического анализа и синтеза. Однако наряду с ними в наше время широко применяются физические методы определения строения — разные виды спектроскопии, ядерный магнитный резонанс, масс-спектрометрия, определение дипольных моментов, рентгенография, электронография. Значение этих методов ныне столь велико, что, дополняя Бутлерова, в наше время мы можем сказать строение можно изучать химическими и физическими методами. [c.31]

    Для экспериментального исследования строения молекул и в различных агрегатных состояниях используют рентгенографию, электронографию, нейтронографию, ИК-спектры, микроволновую спектроскопию, ядерный магнитный резонанс. [c.133]

    В настоящее время при изучении строения органических веществ все большее значение приобретают многочисленные физические методы исследования органических веществ рентгенография, электронография, спектроскопия и многие другие. [c.21]


    Важное место в Энциклопедии занимают вопросы теории строение атома и молекулы, механизмы химических процессов, связь реакционной способности со строением вещества. Широко освещаются методы исследования -хроматография, спектроскопия, масс-спектро-метрия, магнитный резонанс, рентгенография и многие другие. Физическая химия представлена обзорами, освещающими все ее разделы, а также большим числом статей по более узким вопросам. В статьях по неорганической химии приведены подробные сведения о химических элементах и их соединениях. Органическая химия представлена наибольшим числом статей. Описаны все классы и большое число индивидуальных соединений - их структура, способы получения, практическое применение. Рассмот- [c.5]

    Весьма трудно оказалось установить различие между смесью полиэтилена и полипропилена, когда оба полимера весьма нолидиснсрсны, и истинным сополимером этилена и пропилена, имеющим также какое-то определенное молекулярновесовое распределение. Натта разрешил эту трудную задачу, сочетая методы инфракрасной спектроскопии, рентгенографии, меченых атомов и фракционирования полимеров, полученных на различных катализаторах, при различных соотношениях мономеров, при разных температурах и при различной продолжительности реакции. Он нашел такие условия, при которых образуются истинные сополимеры, и получил, например, с хорошим выходом сополимеры, содержащие от 30 до 80% этилена и имеющие характеристические вязкости до 6,5. На рис. 25 приведены кривые интенсивности рентгенограмм, полученные с помощью счетчика Гейгера для изотактического полипропилена I, линейного полиэтилена 1П и сополимера этилена (70%) и пропилена (30%) И, состав которого был определен с помощью метода инфракрасной спектроскопии и независимо подтвержден методом меченых атомов с использованием этилена, меченного [c.226]

    Для определения состава и строения Б. используют также УФ- и ИК-спектроскопию, рентгенографию, дифференциальный термич. анализ, а также пикнометрич. и рефрактометрич методы исследования, основанные на правиле аддитивности уд. объемов и уд. рефракций компонентов Б. Достаточно успешно используется и метод ЯМР, к-рый значительно облегчает точное установление состава и строения Б. Для определения мол. массы и композиционной неоднородности Б. типа (А) — (В), в нек-рых случаях (прп подборе растворителей с учетом показателей преломления компонентов Б.) м. б. использован метод светорассеяния. Точный, но довольно сложный метод количественного анализа Б.— равновесная седиментация в градиенте плотности с использованием ультрацентрифуги. Данные о составе и строении Б. могут быть получены и при изучении нек-рых их физико-механич. свойств (напр., термомеханических). [c.136]

    В исследованиях молекулярного строения и свойств полистр-рольных систем широко использовались ультрафиолетовая и инфракрасная спектроскопия, рентгенография, протонный магнитный резонанс и другие современные физические методы исследования [503, 518, 1953—1961]. [c.299]

    Методами ЯМР, ИК-спектроскопии, рентгенографии и механических испытаний исследована серия образцов полиэтилентерефталата для выяснения природы переходов в нем в области температур от 90 до 465° Показано, что полиэтиленте- [c.240]

    Исследование изменения структуры капроновых волокон после пребывания в живом организме методами ИК-спектроскопии, рентгенографии и световой микроскопии показало, что гидролиз, сопровождающийся нарушением надмолекулярной структуры, происходит главным образом на поверхности надмолекулярных структурных образований и мало затрагивает (до стадии значительного разрушения волокна) кристаллические участки [199]. Вероятно прежде зсего гидролиз протекает в области структурных дефектов. [c.94]

    Физическое — исследование молекулярных механизмов, физических и химических явлений и причин, обусловливающих изменение свойств пенопо.лимеров при внешних воздействиях, изучение химического строения и морфологии с помощью методов спектроскопии, рентгенографии, микроскопии, термографии и т. д. [c.14]

    Чтобы обеспечить получение материалов с заданными свойствами, предварительно необходимо всесторонне изучить условия осаждения (реакции образования), состав, структуру и свойства гидроокисных систем. Это можно достичь только путем сочетания нескольких методов и особенно дифференциальной термографии и термограви-метрии (дериватография), ИК- и ПМР-спектроскопии, рентгенографии и электрографии, оптической и электронной микроскопии, качественного и количественного (фазового) химического анализов. [c.5]

    Фазовый состав катализаторов. Для общего фазового анализа катализаторов используются в основном два метода — рентгенография и дифракция электронов (электронография), хотя для некоторых специальных задач могут применяться и другие физические методы — магнитной восприимчивости, термография, ЭПР, различные виды спектроскопии. Практически наиболее широко применяется рентгенография, основанная иа дифракции характеристического рентгеновского излучения на поликристаллических образцах. Каждая фаза имеет свою кристаллическую решетку и, следовательно, дает вполне определенную дифракционную картину. На дебаеграмме каждой фазе соответствует определенная серия линий. Расположение линий на дебаеграмме определяется межплоскостными расстояниями кристалла, а их относительная интенсивность эависит от расположения атомов в элементарной ячейке. Межплоскостные расстояния d вычисляются по уравнению Брэгга—Вульфа  [c.379]

    Для исследования состава поверхностных слоев, определения функциональных групп на поверхности, межатомных и межмоле-кулярных связей широко используются традиционные оптические методы спектроскопия (инфракрасная, ультрафиолетовая, комбинационного рассеяния), рентгенография, электронография и др. Их применение для таких исследований отличается специфическими способами приготовления испытуемых образцов, поскольку информация должна поступать из очень тонкой области системы, тол-щиной порядка нескольких моноатомных или мономолекулярных слоев. Названные методы исследования достаточно подробно из лагаются в курсах физики и физической химии. [c.246]

    Так, в работах /123, 124/ на основе данных электронной и /125/ рентгеновской дифракции бып сделан вывод, что для структуры углеводородных цепей в жидкой фазе характерна высокая упорядоченность. Упорядочшные области, образованные параллельными участками цепей в транс-конформациях, могут в случае н-алканов и полиэтилена простираться на расстояния 10 нм и занимать до 60% объема расплава. Однако последующие исследования функций радиального распределения, полученных методами электронографии и рентгенографии /125/, поставили под сомнение выводы авторов /123, 124/ и выявили лишь локальную упорядоченность в располож ии участков молекул, по сути дела ничем не отличающуюся от ближнего порядка в структуре простых низкомолекулярных жидкостей. Аналогичные выводы получены методами ИК-спектроскопии /106/ и методом малоуглового рассеяния нейтронов /107/. [c.159]

    Аналогичные явления наблюдались нри действии давления на реакции полимеризации элементорганических мономеров, содержащих вместо кремния другие элементы германий, олово, свинец. Исследования полимеризации веществ, находящихся в твердом состоянии, под давлением крайне немногочисленны. Методами рентгенографии, ИК спектроскопии и электронной спектроскопии исследовались продукты полимеризации аценафтилена, диаценафтилена, полиаценафтилена и пентацина и продукты взаимодействия (сополимеризации) теграцианэти-лена с периленом и нафталином. Опыты проводились при 25 и давлении в диапазоне от 0,4 до 35 ГПа. [c.202]

    Разработаны методы для экспериментального подтверждения возможности существенного перегрева активного компонента катализатора в процессе экзотермической реакции (рентгенографии in situ, ИК-спектроскопии, микроскопии с тепловизорной приставкой). [c.58]

    Разработанные методики in situ рентгенографии, ИК фурье - спектроскопии и тепловизионной микроскопии позволяют определять реальную температуру поверхности и объема, а также активного компонента функционирующего катализатора [c.60]


Библиография для Оже-спектроскопия рентгенография: [c.316]   
Смотреть страницы где упоминается термин Оже-спектроскопия рентгенография: [c.461]    [c.289]    [c.307]    [c.350]    [c.461]    [c.232]    [c.191]    [c.202]    [c.215]    [c.465]    [c.476]    [c.465]    [c.476]    [c.83]   
Физикохимия неорганических полимерных и композиционных материалов (1990) -- [ c.149 , c.156 , c.161 ]




ПОИСК





Смотрите так же термины и статьи:

Рентгенография



© 2025 chem21.info Реклама на сайте