Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экзотермический процесс реакция

    Как уже было указано выше, термический крекинг является преимущественно эндотермическим процессом. Реакции, происходящие в зоне крекинга, представляют собой комбинацию реакций разложения и конденсации. Поскольку преобладают реакции разложения, сопровождающиеся поглощением тепла, то они перекрывают экзотермический эффект реакции конденсации. Теплота крекинг-процесса при стандартных режимах составляет около 200 ккал на килограмм образованного газа и бензина. Теплота реакции может быть определена достаточно точно на основании следующего уравнения  [c.41]


    Платиновый катализатор, что для получения ароматических не очень важно, но имеет большое значение для улучшения антидетонационных свойств бензина, способствует изомеризации парафиновых углеводородов, крекингу их и гидрированию ненасыщенных продуктов крекинга (гидрокрекинг). Последние реакции представляют собой экзотермический процесс, в ходе которого используется часть водорода, освобождающегося в процессе дегидрирования. [c.104]

    Утилизация тепла и энергии - тепло или энергия потока используется для выработки тепловых (пар, горячая вода), электрических и других энергетических ресурсов, применяемых не в самом производстве. Химическое производство использует энергию для обеспечения химико-технологического процесса, большая часть которой остается в виде энергии технологических потоков (не считая энергии, потребляемой эндотермическими процессами, потерь на термодинамическую необратимость процессов и естественных потерь в окружающую среду). Энергия может также выделяться при протекании экзотермических процессов (реакций). Тепловую энергию потоков можно использо- [c.262]

    Сырье насосом 1, активатор насосом 2 и (если необходимо понизить вязкость сырья) растворитель (бензин Бр-1) насосом 3 подаются в реактор комплексообразования 11. Туда же поступает рециркулят I из центрифуг 14 ступени III центрифугирования, представляющий собой часть бензинового раствора депарафината и 80 %-ную суспензию (пульпу) кристаллического карбамида в этом растворе. В реакторе 11 при механическом перемешивании протекает реакция комплексообразования. Теплота экзотермического процесса комплексообразования передается через рубашку холодной воде. [c.91]

    Экзотермический процесс (реакция) - процесс, сопровождающийся вьщелением теплоты. [c.13]

    Газ (гомогенное) включая каталитические процессы Динамическая (непрерывная) То же Здесь часто одновременно протекают экзотермические и эндотермические реакции, однако общий тепловой эффект соответствует экзотермическому процессу Неполное сожжение метана для получения ацетилена 6СН, -Ь Ю,- СгН -f -Ь 8На -Н- ЗСО СОг ЗН О Печи Состав продуктов реакции зависит от соотношения реагентов, гидродинамических характеристик процесса и т. Д- [c.32]

    В окружающую среду). С другой стороны, в ходе протекания экзотермических процессов (реакций) энергия может также выделяться. Таким образом, оставшуюся и выработанную энергию можно использовать, получая, например, пар в котлах-утилизаторах (рис. 5.37, а), а энергию давления используя для привода электрогенератора (рис. 5.37, б). Такие потоки, обладающие определенной энергией, являются вторичными энергетическими ресурсами . Они играют значительную роль в промышленном производстве. [c.309]


    Синтез аммиака из составляющих элементов представляет собой экзотермический процесс стандартная энтальпия реакции (16-1) АЩд = = — 92,39 кДж на моль реакции в записанном виде, или — 46,19 кДж на моль аммиака. При повышении температуры газовой смеси реакция (16-1) затрудняется, а реакция (16-2), наоборот, облегчается, поскольку она протекает с поглощением тепла и частично противодействует повышению температуры. При добавлении в сосуд некоторого количества аммиака из внешнего источника реакция (16-1) также затрудняется, а реакция (16-2), наоборот, облегчается, поскольку последняя приводит к уменьшению количества добавляемого аммиака. Принцип Ле Шателье удобен тем, что позволяет делать качественные предсказания о поведении равновесной системы в условиях внешнего воздействия. [c.52]

    Гидрокрекинг является экзотермическим процессом, реакция [c.123]

    Нормы расхода тепла и энергии устанавливаются на основании тепловых и энергетических балансов. При этом в приходной части теплового баланса находят отражение теплота, развиваемая экзотермическими химическими реакциями физическая теплота, приносимая нагретыми реагирующими веществами теплота, вносимая в процесс извне. В расходную часть входят теплота, поглощаемая в эндотермических процессах физическая теплота, уносимая продуктами реакции потери теплоты в окружающую среду. [c.99]

    Теплоту химической реакции, проводимой при постоянном давлении (или хотя бы при условии, что окончательное давление совпадает с исходным), принято называть изменением энтальпии реагирующей системы, АН (читается дельта-аш ). Как мы узнаем из гл. 15, изменение энергии АЕ соответствует теплоте реакции, проводимой при постоянном объеме, например в калориметрической бомбе, показанной на рис. 2-4. Энтальпию можно рассматривать как энергию, в которую внесена поправка, учитывающая работу, которую могли совершить реагенты, отталкивая атмосферу, если они расширялись во время реакции. Различие между Д и АН невелико, но очень важно, хотя сейчас мы еще не будем уделять ему внимания. Если в процессе реакции выделяется теплота, то энтальпия реагирующей системы убывает в этом случае изменение энтальпии АН отрицательно. Такие реакции называются экзотермическими. Реакции, протекающие с поглощением теплоты, называются эндотермическими в таких реакциях происходит возрастание энтальпии реакционной смеси. Для реакции разложения пероксида водорода можно записать  [c.89]

    При нитровании в большом масштабе, проводимом по этому методу, необходимо учитывать, что реакция нитрования является экзотермическим процессом. Поэтому углеводород подогревают до необходимой исходной температуры, которая затем при хорошей теплоизоляции повышается за счет теплоты испарения азотной кислоты. Температура затем регулируется скоростью подачи азотной кислоты. Чрезмерное нагревание может быть предотвращено применением более разбавленной азотной кислоты. [c.305]

    Для отвода теплоты, выделяющейся в результате экзотермической реакции сульфохлорирования, установлен охлаждающий змеевик. Газы, выходящие из верхнего конца сосуда, а именно непрореагировавший углеводород, двуокись серы и хлористый водород, отводят в промывную башню, в которой они освобождаются от хлористого водорода и двуокиси серы, а углеводород направляют в трубопровод отходящих газов. В процессе реакции четыреххлористый углерод обогащается продуктами реакции. Когда концентрация сульфохлоридов достигнет примерно 20%, то ее поддерживают на этом уровне непрерывным удалением части раствора и добавлением свежего четыреххлористого углерода. [c.390]

    Во многих сильно экзотермических процессах необходимо отводить очень большие количества теплоты, чтобы процесс проходил в условиях выгодного отдаления от состояния равновесия или чтобы избежать перегрева каталитической массы, которая теряет активность при излишне высоких температурах. Создание аппарата, в котором проходит экзотермическая реакция, в виде котла, производящего пар для нужд завода, позволило рационально использовать отводимую теплоту. [c.400]

    Проведение нитрования требует быстрого отвода тепла, выделяющегося в результате реакции. Как указывалось, тепло выделяется не только вследствие собственно экзотермического характера реакции,-но и в результате разбавления серной кислоты водой, образующейся в результате процесса. Если использовать нитрующие смеси (приготовленные из отработанных кислот) с большим исходным содержа- [c.302]

    Индекс р указывает, что перенос теплоты происходит при постоянном давлении.) При постоянном давлении энтальпия возрастает в ходе эндотермических реакций при поступлении теплоты в систему, в экзотермических процессах происходит уменьшение энтальпии, когда система теряет теплоту. [c.20]

    Система уравнений (VII.35), (VII.36) не решается аналитически даже для процессов с простейшей кинетикой. Тем пе менее, ее анализ позволяет установить некоторые особенности решения. При расчете экзотермического процесса наиболее интересной величиной является максимальный разогрев, достигаемый в горячей точке реактора. Если в реактор поступает исходная смесь с температурой, близкой к температуре теплоносителя Г,,, то в сечениях, близких к входному, теплоотвод окажется незначительным и процесс будет проходить в почти адиабатических условиях. В дальнейшем, по мере повышения температуры реагирующей смеси скорость теплообмена возрастает и в некотором сечении сравняется со скоростью тепловыделения. После этого температура реакции, пройдя через максимум, начнет убывать. Верхнюю оценку для достигаемой максимальной температуры можно найти, считая, что процесс протекает адиабатически вплоть до самой горячей точки . Тогда верхняя оценка температуры, при которой скорости тепловыделения и теплоотвода сравняются, может быть найдена по точке пересечения прямой теплоотвода q = а (Т — Т .) и кривой тепловыделения ф (Т) = hr (Т). Последнюю строят с учетом соотношения между концентрацией и температурой (VII.28), которое выполняется в адиабатическом процессе. Кривая тепловыделения и прямая теплоотвода изображены на рис. III.3 они пересекаются в нескольких точках, и верхнюю оценку максимальной температуры дает точка пересечения, соответствующая наименьшей температуре. По мере увеличения температуры теплоносителя прямая теплоотвода сдвигается вправо, и при некотором критическом значении низкотемпературная точка пересечения исчезает. При этом верхняя оценка температуры в горячей точке резко повышается. Формально значение максимальной температуры, конечно, не может измениться скачком. Из теории обыкновенных дифференциальных уравнений следует, что решение системы уравнений (VII.35), (VII.36) непрерывно изменяется с изменением всех параметров, в том числе и (см. также раздел VII.2). Однако в области значений параметров, близкой к той, где кривая тепловыделения касается прямой теплоотвода (рис. III.3, прямая 4), следует ожидать сильной чувствительности температуры в горячей точке к изменению параметров процесса. [c.288]


    В ТО время как при высоких температурах предпочтительно протекает обратная реакция дегидрогенизации. Процессы гидрогенизации ацетиленовых и ароматических углеводородов являются экзотермическими низкотемпературными реакциями. [c.10]

    Протекание экзотермических обратимых реакций характеризуется наличием оптимальной температуры, соответствующей максимальному выходу целевого продукта. Поэтому на участках печи, где реагенты далеки от состояния химического равновесия, т. е. в начале процесса, целесообразно создавать высокую температуру, а в конце, когда получающиеся продукты приближаются к равновесному состоянию, температура должна быть пониженной, чтобы сдвинуть процесс в сторону более полного превращения исходных материалов. [c.116]

    Характерно, что в экзотермических процессах наблюдаются значения фактора эффективности, превышающие единицу, причем при больших значениях параметра 0, когда возникают множественные режимы, увеличение фактора эффективности за счет внутреннего разогрева зерна может быть весьма значительным. Такое увеличение фактора эффективности характерно только для необратимых реакций, так как в случае обратимой экзотермической реакции внутренний разогрев приводит к смещению равновесия в нежелательную сторону. [c.128]

    Влияние ячеистой структуры слоя иа режимы экзотермической реакции. Исследование экзотермических процессов на изолированных частицах катализатора (см. главу III) показывает, что при определенных условиях могут наблюдаться скачкообразные переходы между различными стационарными режимами процесса при плавном изменении состава и температуры потока, омывающего частицу. Если описывать зернистый слой катализатора в приближении идеального вытеснения, то локальные условия перескока между режимами будут такими же, как и в случае изолированной частицы. Например, если концентрации реагентов и температура в данной точке слоя таковы, что в этих условиях кинетического режима процесса на изолированной частице не существует, то частица, катализатора, помещенная в данную точку слоя, будет работать в диффузионном режиме. Причиной появления перескоков между режимами частицы, помещенной в слой, в условиях, когда на изолированной частице эти перескоки не наблюдаются, может быть только перенос тепла против течения потока, не учитываемый в приближении идеального вытеснения. [c.248]

    В трубчатых реакторах имеются хорошие условия для отвода тепла от катализатора. Это объясняется тем, что отношение поверхности теплоотдачи к объему катализатора в них весьма велико. Кроме того, в трубчатых реакторах применяют большей частью высокие слои катализатора и соответствующие им большие линейные скорости потока газа, что обеспечивает приемлемые значения констант тепло- и массопередачи. Указанные преимущества позволяют осуществлять в трубчатых реакторах сильно экзотермические процессы) например, различные реакции каталитического окисления). [c.267]

    Катализатор не влияет на истинное равновесие, т. е. че меняет константу равновесия и равновесные концентра-дии. Он в равной степени ускоряет и прямую, и обратную реакции. Если повышение температуры не только убыстряет процесс, но и смещает равновесие, то катализатор лишь изменяет время его достижения оно тем меньше, чем активнее катализатор. Вводя катализатор в реакционную зону экзотермических процессов, можно осуществить снижение температуры, не проигрывая в скорости процесса — обстоятельство, имеющее первостепенное значение, так как многие промышленно важные реакции протекают с выделением тепла. [c.119]

    При проведении экзотермических процессов, как адиабатических, так и с внутренним теплообменом, иногда применяют автотермиче-ские реакционные узлы, конструкция которых позволяет осуществлять охлаждение реагирующей смеси в промежуточных теплообменниках или в зоне реакции с помощью теплообмена с холодной исходной смесью, одновременно нагревающейся до температуры реакции. Теплообмен между входящим и выходящим из реактора потоками может быть осуществлен и в емкостных (одностадийных) адиабатических реакторах. В отдельных случаях, когда допустим значительный перегрев хотя бы одного из реагентов (например, водяного пара), подобный принцип применим и при проведении эндотермических нроцессов. Преимуществом автотермических реакционных узлов является уменьшение затрат на теплообмен, а также определенные конструктивные удобства, особенно важные при проведении реакций под давлением. Основным недостатком этих схем является возникновение явлений неустойчивости и скачкообразного перехода между различными режимами процесса. [c.268]

    Для большинства экзотермических процессов скорость вначале увеличивается с возрастанием степени превращения вследствие повышения температуры в системе, но в конце снижается с уменьшением л в результате расходования реагентов. При сравнительно малых степенях превращения средняя скорость реакции в аппарате идеального смешения всегда выше, чем в аппарате идеального вытеснения. Однако по достижении некото- [c.112]

    Еще один пример. При обратимом экзотермическом процессе в реакторе с неподвижным слоем катализатора температура монотонно растет по длине слоя катализатора и практически линейно зависит от степени превращения. Однако оптимальный режим требует понижения температуры с ростом степени превращения, чего нельзя достичь в адиабатических условиях процесса. Поэтому на практике процесс ведут в нескольких последовательно расположенных адиабатических слоях катализатора, между которыми каким-либо способом отводится тепло реакций. Как будет показано далее, в таких процессах с искусственно создаваемыми нестационарными условиями возможна организация режима, при котором температура будет понижаться с увеличением степени превращения, что позволит проводить обратимые процессы всего в одном слое катализатора. [c.305]

    Большие радикалы (СаН5, СдН,.......) термически нестойки при температурах ниже температуры разложения исходного соединения (/ Н). Энергия активации в этом случае значительно меньше энергии, необходимой для разложения исходного углеводорода, что объясняется тем фактом, что с разры-лом только одной связи (С—С или С—Н) остаток может одновременно перегруппироваться с образованием олефина это. экзотермический процесс, который требует меньше энергии, чем для проведения всей реакции. [c.11]

    Трубчатые змеевиковые реакторы. Трубчатый змеевиковый реактор с вертикальным расположением труб был разработан для производства битумов по непрерывной схеме на отечественных НПЗ [2, 55, 190]. Температурный режим реакторов. (Кременчугского и Новогорьковского НПЗ) поддерживается за счет тепла дымовых газов, поступающих из форкамерной печи. Однако при таком решении плохо учитывается специфика экзотермического процесса окисления. Действительно, для ускорения нагрева реакционной смеси в первых по ходу потока трубах реактора необходимо повысить температуру дымовых газов, но в результате перегревается окисляемый материал в последующих трубах, где реакция окисления и выделение тепла идут с высокими скоростями. Так м образом, приходится поддерживать какую-то промежуточную температуру дымовых газов, нео[ тпмал у,,, как для нагрева реакционной смеси до температуры реакциь, так и для последующего поддер.жания температуры на желательном уровне. Для установок Ангарского, Киришского, Полоцкого, Новоярославского и Сызранского НПЗ найдено более удачное решение сырье предварительно нагревается в трубчатой печи, а избыточное тепло реакции в случае необходимости снимают , обдувая воздухом трубы реактора, помещенные в общий кожух (по проекту Омского филиала ВНИПИнефти каждая труба реактора помещена в отдельный кожух). [c.130]

    Процесс сернокислотной гидратации пропилена осуп ествляет-ся следуюш пм образом (аналогично представленной на рпс. 4 схеме сернокислотной гидратации этилена). Пропилен в виде иропан-пропиленовой фракции поступает в абсорбер. Сюда же подается серная кислота с концентрацией около 70%. Применение более концентрированной кислоты приводит к увеличенному выходу полимеров пропилена. Повышение температуры также способствует образованию побочных продуктов. Вследствие этого процесс проводят в мягких температурных условиях (65—70° С). Для снятия экзотермического тепла реакции сульфирования пропилена применяют рециркуляцию изопропилсерной кислоты, охлажденной в выносных холодильниках. [c.44]

    Экономичность конструкции достигается также за счет осуществления необходимого теплообмена между исходной и реакционной смесью внутри аппарата. Образование аммиака—экзотермический процесс. Скорость реакции, конечно, быстро увеличивается с повышением температуры, но условия равновесия более благоприятны при низких температурахрис. Х1-9 показана достигаемая степень преврадения при адиабатическом и изотермическом режимах реакции. [c.362]

    Представим эту реакцию как воображаемую последовательность разрыва и образования связей (рис. П1.12). На первой воображаемой стадии I все связи в молекуле разриваются и образуются свободные атомы. В этом процессе разрыва связей а нерг ия поглощается. Он называется эндотермическим. На второй стадии П - образования связей — получаются две молекулы воды. Образование связсй приводит к выделению энергии. Это — экзотермический процесс. В целом сумма стадий I и П - экзотермична, поскольку суммарная энергия разрыва меньше суммарной энергии образования данных связей. А если экзотермическая реакция началась, то в ходе ее непрерывно будет выделяться энергия. [c.199]

    Топливо на битумных установках расходуется на нагрев сырья и на сжигание газов окисления. Расход топлива на нагрев сырья не является оправданным для экзотермического процесса производства битумов окислением. Даже в наиболее энергоемком процессе окисления в трубчатом реакторе необходимый нагрев сырья можно осуществить в теплообменнике за счет утилизации теплоты реакции окисления [54, 73]. На сжигание газов окисления в зависимости от вида сырья и марки получаемого бптума расход топлива неодинаков, что объясняется разным количеством воздуха (и, следовательно, объемом газов окисления), необходимого для обеспечения заданной степени окисления продукта. При использовании гудрона западно-сибирских нефтей, требующего повышенного расхода воздуха на производство дорожных и строительных битумов, расход топлива, достаточный для сжигания газов окисления, соответствует 10 кг у. т, на 1 т битума. Эта величина должна считаться максимально допустимой [183]. [c.123]

    Уравнение (III.47) имеет в точности ту же форму, что и уравнения (111.42), отличаясь от последних только коэффициентами. Можно сказать, что тепловой эффект h играет роль стехиометрического коэффициента температуры в экзотермическом процессе А >0 и тепло можно рассматривать как продукт реакции , а в эндотерт мическом процессе А < О и тепло играет роль исходного вещества . Выше отмечали, что, если реакция ускоряется одним из ее продуктов, то можно ожидать, что решение системы уравнений (111.42) будет неоднозначным. При этом одному и тому же набору значений характерных параметров будет соответствовать несколько возможных стационарных режимов процесса. Именно такая ситуация возникает в экзотермических процессах. [c.115]

    Экзотермические процессы часто проводят в трубчатых реакторах с внутренним теплообменом, используя в качестве теплоносртеля исходную смесь (рис. УП1.10). При этом одновременно осуществляется отвод тепла из зоны реакции и [c.353]

    Экзотермические химические реакции в печах осуществляются между исходными материалами и специально вводимыми в процесс горючими материалами (топливом) и окислителем. Топливо, сжигаемое в иечах, может быть газовым, жидким и твердым, а окислитель — практически всегда в газовой фазе (воздух, кислород). [c.52]

    Второй вид энергии отражается членом Qp=T S, который определяет ту часть энтальпии, которая в изотермическом процессе не может быть превращена в работу, а переходит только в теплоту, рассеивающуюся во внешнюю среду. Поэтому величину Qp=T S называют связанной энергией или обесцененной энергией. В тепловых машинах связанной энергией является энергия межмолекулярного взаимодействия частиц рабочего тела (водяной пар). Теплота экзотермических процессов (конденсация или реакции синтеза) также может явиться примером связанной энергии. Это броунова часть энергии Н. [c.121]

    Ю. Томсен (1853) и П. Бертло (1867) предложили за меру Чимического сродства принимать тепловой эффект химической реакции, которая проходит самопроизвольно с выделением теплоты (экзотермические процессы). Однако работами Д. И. Менделеева (1875) и А. Л. Потылицина (1874) было показано, что этот принцип не обладает общностью. Дело в том, что, во-первых, некоторые реакции проходят самопроизвольно, но с поглощением энергии в форме теплоты при обычных температурах. Примером такой реакции является реакция взаимодействия H I с глауберовой солью  [c.191]

    Рассчитать температуру и равновесный выход продуктов реакции, при которых возможна компенсация теплоты эндотермического процесса (I) теплотой экзотермического процесса (П). Оба процесса проводятся в идеальной газовой смеси веществ. В реактор загружено эквимолекулярное количество спирта и бензола, равно п° молей. Равновесное превращение спирта —X, СбНб—у. [c.263]

    Укажем далее реакции атомов щелочных металлов с галогеноводородами. Из реакций этого типа изучены реакции Na и К с H I, НВг и HJ. Было найдено, что скорость этих реакций определяется величиной н знаком теплового эффекта процесса М + НХ = MX h Н, причем энергия активации эндотермических нроцессов равна их тепловому эффекту. Энергия же активации экзотермических процессов практически равна нулю. Так, сопоставляя скорость реакции, т. е. число образующихся молеку.т NaX с числом газо-кипетических столкновений атомов Na с молекулами НХ, Хартель [312] нашел, что энергия активации процессов Na + H l (НВг, HJ) = Na l (NaBr, NaJ) равна соответственно 4,5 1,9 и 0,2 ккал. Эти величины он сравнивает с тепловыми эффектами указанных процессов, которые, согласно его вычислениям, равны —5,1 —1,6 и 0,0 ккал. [c.30]


Смотреть страницы где упоминается термин Экзотермический процесс реакция : [c.90]    [c.113]    [c.157]    [c.100]    [c.682]    [c.195]    [c.147]    [c.221]    [c.486]   
Оборудование производств Издание 2 (1974) -- [ c.71 , c.72 , c.80 , c.86 , c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс экзотермический

Реакции экзотермические



© 2025 chem21.info Реклама на сайте