Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия связь со стереохимией

    Результаты первых работ по исследованию карбонилгидридов переходных металлов методами спектроскопии и дифракции электронов позволили сделать следующие выводы 1) атом водорода не влияет на стереохимию этих соединений, 2) атом водорода погружен в орбитали металла. С появлением рентгеноструктурных данных стало очевидно, что в действительности атом водорода проявляет стереохимическое влияние. Оказалось, что связь металл—водород имеет длину порядка 1,7 A, характерную для нормальной ковалентной связи. Геометрия молекул гидридных комплексов в большей мере зависит от числа и размера лигандов степень отклонения от идеальной геометрии увеличивается при возрастании объема лигандов и кратности связи в транс-положении к координированному гидрид-иону. Значительное трансвлияние координированного гидрид-иона очевидно из сравнения длин связей в этих комплексах. Методом дифракции рентгеновских лучей и (или) нейтронов изучены структуры примерно шестидесяти гидридных комплексов переходных металлов. Перечень этих структур включает соединения обширного ряда металлов с разнообразными лигандами геометрия этих комплексов варьируется от плоского квадрата (координационное число четыре) до центрированной тригональной призмы (координационное число девять). Среди комплексов, содержащих мостиковый водород, встречаются структуры, в которых атом водорода связывает два и больше атомов переходных металлов, или переходный металл и бор, или переходный металл и кремний. [c.76]


    Хотя явление оптической активности известно давно [1], первыми спектральными методами, которые стали широко использоваться в органической химии, явились ультрафиолетовая и инфракрасная спектроскопия. Дисперсия оптического вращения и феноменологически родственный оптический круговой дихроизм только недавно привлекли внимание химиков и биохимиков и нашли широкое применение для решения аналитических, структурных и стереохимических проблем. Дисперсия оптического вращения (ДОВ) и круговой дихроизм (КД) — новые, очень важные физические методы, поскольку они помогают разобраться в широких аспектах, с которыми связаны многие области знания. Применение этих методов в современной науке очень велико и охватывает структурные и стереохимические проблемы в органической хилши (например, в химии природных соединений), конформационные проблемы в биохимии (спиральность белковых цепей), пространственные аспекты в неорганической химии и химии металлоорганических соединений (например, строение лигандов), а также такие фундаментальные проблемы, как обнаружение оптической активности в космическом пространстве (например, исследование метеоритов и т. д.). Эти оптические методы находятся в настоящее время в стадии развития, и исследование эффекта Коттона почти каждого прежде не изученного хромофора является важным вкладом в развитие стереохимии. Однако исследования в области ДОВ и КД встречают некоторые затруднения, из которых важно упомянуть два следующих. Первое — это технические трудности. В настоящее время возможны измерения в области 180—700 ммк, однако многие хромофоры поглощают ниже 180 ммк. Вторая, более существенная трудность даже когда с помощью имеющихся приборов удается исследовать оптически активный хромофор, иногда нелегко сделать структурные и стереохимические выводы из-за отсутствия теоретических обоснований (например, эффект Коттона, вызываемый п л -переходом в а,р-ненасыщенных кетонах). Отсюда вытекает настоятельная необходимость более [c.101]

    Успехи в области стереохимии связаны с достижениями теории химической связи и физических методов исследования молекул (спектроскопия, рентгенография, ЯМР и др.). [c.108]

    Существование таутомерии для моносахаридов подтверждено экспериментально путем исследования нх оптической активности, а также с помощью ЯМР- и ИК-спектроскопии. Явление мутаротации связано со взаимными превращениями таутомерных форм моносахарида и установлением равновесия менаду ними. Положение равновесия зависит от структуры и стереохимии моносахарида, но не зависит от исходной таутомерией формы данного сахара. Так, свежеприготовленные водные растворы а- и р-О-глюкозы имеют удельное вращение [а1д, 106° и -1-22,5 соответственно. С течением времени удельное вращение первого падает, а второго возрастает, в обоих случаях достигая постоянной величины —52,5°. [c.229]


    Наша задача не в том, чтобы научить читателя методике расшифровки спектров ПМР (в этом смысле изложенное выше весьма схематично), а в том, чтобы по возможности передать логику мышления в этой области. И в связи с этим особенно важно обратить внимание на два обстоятельства. Первое. В наших рассуждениях мы опирались на знание структуры изучаемого соединения — мы могли не знать его стереохимии, по на бутлеровскую структуру ссылались постоянно. В этом смысле спектроскопия ПМР дает (в некоторых пределах, конечно) тем [c.83]

    ОПРЕДЕЛЕНИЕ ВНУТРИМОЛЕКУЛЯРНЫХ ВОДОРОДНЫХ СВЯЗЕЙ МЕТОДОМ ИНФРАКРАСНОЙ СПЕКТРОСКОПИИ И ЕГО ПРИМЕНЕНИЕ В СТЕРЕОХИМИИ [c.117]

    Спектральные методы дают информацию о пространственном и энергетическом распределении электронной плотности, т. е. о характеристиках химической связи. Для решения этой задачи требуется сначала построить теоретическую модель. Примером таких моделей может служить теория молекулярных орбиталей. Спектральные методы могут быть полезны и для решения задач стереохимии, связанных с изучением распределения атомов в пространстве и размеров молекул. Например, с помощью ИК- и ЯМР-спектроскопии по числу наблюдаемых линий можно получить нуж- [c.210]

    Спектроскопию ЯМР высокого разрешения можно применять для изучения самЫх разнообразных химических проблем, решение которых другими методами или невозможно, или очень затруднено. К преимуществам метода можно отнести его быстроту, отсутствие необходимости подвергать деструкции исследуемое вещество и в ряде случаев однозначность получаемой с его помощью информации. Метод ЯМР может быть использован при определении молекулярной структуры, при исследовании стереохимии молекул, заторможенности внутреннего вращения, явлений диссоциации, реакций обмена и процессов образования водородной связи. В этой главе детально будут рассмотрены только две первые области применения ЯМР. [c.220]

    Самую непосредственную информацию о геометрии молекул (межатомных расстояниях, валентных и двугранных углах) дают рентгено-и электронография. Векторный характер дипольных моментов позволяет делать важные выводы об ориентации полярных связей. Менее прямую, но практически очень ценную информацию о пространственных особенностях можно получить с помощью ультрафиолетовой и инфракрасной спектроскопии. Важнейшим методом исследования в органической химии вообще и в стереохимии в частности стал ядерный магнитный резонанс. Стереохимическую информацию можно получать как из значений химических сдвигов, так и из констант спин-спинового взаимодействия. [c.39]

    Мы считаем, что такая планировка курса имеет, несомненно, и другие преимущества. Химические реакции и их приложение к синтезу вводятся только после того, как студент познакомится со структурой и реагента, и продукта. Раннее введение стереохимии и теории химической реакционной способности позволяет использовать эти понятия при обсуждении реакций повсеместно. Распределение реакций по классам дает возможность рассматривать механизм реакций, диапазон, ограничения и побочные реакции применительно к целой группе преобразований. Многие темы, как, например, физические свойства, теория кислот и оснований, выяснение структуры, спектроскопия, номенклатура и библиография, которые обычно бывают разбросаны, здесь получают целостную трактовку. Увеличивается связь между лабораторией и лекцией благодаря введению в первых четырех главах достаточного числа структурных понятий и реакций, для того чтобы дать фундамент для лабораторной работы по крайней мере на семестр. Обсуждение физических свойств и реакций кислот и оснований на ранней стадии курса служит полезным дополнением к лабораторной работе. [c.12]

    Настоящая книга представляет собой учебник для студентов, уже в какой-то мере знакомых с основами органической химии. Обширный материал органической химии рассмотрен автором с точки зрения свойств и поведения отдельных связей, например С — С, С = С, С — О, С — N, С — Зит. д., в различном окружении, т. е. в молекулах различных типов. Такой подход оказался весьма плодотворным и позволил по-новому взглянуть даже на хорошо известные факты. В этом смысле знакомство с книгой будет полезно не только изучающим органическую химию, но и специалистам. Особую ценность представляет первая часть книги (гл. 1—11), в которой излагаются квантовомеханические представления о природе химической связи, рассматриваются физико-химические свойства органических соединений и даются основы физико-химических методов (ИК-, УФ- и ЯМР-спектроскопия, динольные моменты, масс-спектрометрия). Автор удачно расположил непосредственно после описания различных типов химических связей главу по стереохимии органических молекул, в которой подробно и на интересных примерах рассматриваются все виды изомерии. Представления о статических и динамических эффектах в органических молекулах излагаются с позиций английской школы К. Ингольда и широко используются автором при разборе различных типов механизмов органических реакций. Все реакции разбиты на гомоли-тические и гетеролитические (нуклеофильные и электрофильные) и включают реакции присоединения, элиминирования и замещения. Из реакций последнего типа рассматривается нуклеофильное замещение у атома углерода в раз- [c.5]


    Поскольку sp -гибридизация является общим свойством четы-рехвалентных соединений элементов подгруппы IVD, четыре связи атома олова имеют, как и у атома германия, тетраэдрическое расположение. Гораздо меньше известно о стереохимии замещения у атома олова, что обусловлено трудггостями получения соответствующих оптически активных соединений. Ранние сообщения о получении оптически активных соединений типа RR R SnI оказались ошибочными методами спектроскопии ЯМР было показано, что подобные галогениды конфигурационно нестабильны [71]. Оптически активные тетраалкил (арил)станианы RR R R Sn стали доступны лишь в последнее время [72, 73]. Существенно большее значение для исследования стереохимии замещения у атома олова имеют результаты работ [74, 75], посвященных выделению и реакциям конфигурационно стабильных оптически активных гидридов типа RR R2SnH. [c.173]

    В химии сахаров, так же как и в других областях органической химии, ИК-спектроскопию применяют прежде всего для функционального анализа соединения —для характеристики функциональных групп и их взаимного расположения. Кроме того, с помощью ИК-спектра можно иногда получить некоторые сведения о структуре и стереохимии моносахаридной молекулы в целом. Наконец, ИК-спектроскопия может использоваться для установления идентичности или неидентичности двух образцов. Для решения каждой из этих задач приходится выбирать соответствующие экспериментальные условия. Так как моносахариды нерастворимы в растворителях, применяемых в ИК-спектроскопии ( I4, H I3, Sj), а использование воды в качестве растворителя требует специальной сложной техники снятие ИК-спектров в растворе производится только для изучения замещенных производных моносахаридов. Для самих моносахаридов, а также для их производных снятие спектров обычно проводится в вазелиновом масле или в таблетках, состоящих из образца и бромида калия. Каждый из этих методов не свободен от принципиальных недостатков, а их применение связано с некоторыми техническими трудностями. [c.58]

    Теоретические представления, спектральные характеристики, вопросы стереохимии, кинетики и термодинамики, сведения о важнейших современных методах синтеза и анализа излагаются в тесной связи с обсуждаемым материалом и потому легче усваиваются. Так, например, суть ИК-спектроскопии и масс-спек-трометрии, использование энергетического профиля реакции для суждения о ее механизме описываются уже в разделе об алканах в разделе об алкенах студент знакомится с металлокомплексным катализом (метатезис, гидроформилирование, восстановление, полимеризация), в разделе о диенах-с теорией молекулярных орбиталей, УФ-спектроскопией, кинетическим и термодинамическим контролем реакций и основами теории перициклических реакций, в разделе об алкинах-с представлением о СН-кислот-ности, сопряженных кислотах и основаниях, в разделе об ал-килгалогенидах - с механизмами 5 1- и 5 2-замещения, ролью растворителя и ионных пар в этих реакциях, в разделе о спиртах -с принципом мягких и жестких кислот и оснований, в разделе [c.10]

    Теоретические представления, спектральные характеристики, вопросы стереохимии, кинетики и термодинамики, сведения о важнейших современных методах синтеза и анализа излагаются в тесной связи с обсуждаемым материалом и потому легче усваиваются. Так, например, суть ИК-спектроскопии и масс-спек-трометрии, использование энергетического профиля реакции для суждения о ее механизме описываются уже в разделе об алканах в разделе об алкенах студент знакомится с металлокомплексным катализом (метатезис, гидроформилирование, восстановление, полимеризация), в разделе о диенах-с теорией молекулярных орбиталей, УФ-спектроскопией, кинетическим и термодинамическим контролем реакций и основами теории перициклических реакций, в разделе об алкинах-с представлением о СН-кислот-ности, сопряженных кислотах и основаниях, в разделе об ал-килгалогенидах-с механизмами 5 ,1- и Х ,2-замещения, ролью растворителя и ионных пар в этих реакциях, в разделе о спиртах -с принципом мягких и жестких кислот и оснований, в разделе о эфирах и а-оксидах - с использованием краун-эфиров и межфазного катализа в органическом синтезе, и т.д. Отдельная глава, помещенная после рассмотрения альдегидов и кетонов, посвящена методу ЯМР. Она написана доктором химических наук А. С. Шашковым. [c.10]

    Хорошо известно, что синтез поливинилметилового эфира и его гомологов может быть проведен в присутствии катионных инициаторов типа ВРз- (С2Н5)20 с образованием (в зависимости от условий реакции) мягких каучукоподобных или жестких кристаллических продуктов. Ранее было установлено, что эти различия связаны со стереохимией цепи при этом, судя по данным рентгеноструктурного анализа, кристаллический полимер имеет преимущественно изотактическую конфигурацию [46, 47]. Позднее в присутствии инициаторов Циглера [48] были получены стереорегулярные полимеры. Исследования с помощью ЯМР-спектроскопии подтвердили ранее сделанные выводы относительно изомерных форм этих полимеров. Браунштейн и Вайле [45] нашли, что в спектрах кристаллических полимеров наибольшую интенсивность имеет пик метоксильных протонов /пт-триад каучукоподобные материалы имеют менее регулярную структуру, но /ит-триады преобладают в некоторой степени во всех изученных полимерах. [c.110]

    Межатомные расстояния и валентные углы для различных пар атомов приведены в таблицах в Приложении к главе 1 (стр. 48 и 51). За небольшими исключениями, значения этих величин у высокомолекулярных веществ и простых молекул вполне аналогичны. У простой молекулы, такой, как этан, единственным фактором, оказывающим влияние на ее стереохимию, помимо межатомных расстояний и валентных углов, является затрудненное вращение около углерод-углеродной связи. Эта проблема была исследована методами электронной диффракции, раман- и инфракрасной спектроскопии и термодинамики. (Обзор этих работ см. Ingold, 1953.) Очевидно, что устойчивая конформация молекулы этана имеет вид, близкий к показанному на схеме 1, которая представляет собой изображение молекулы при наблюдении ее вдоль связи С С. Нижние С—Н-связи находятся в заторможенных положениях относительно- первых трех связей. У такой молекулы существуют три эквивалентные конформации с энергетическим барьером порядка 2,9 ккал-моль в промежуточных не - заторможенных положениях. [c.291]

    Развитие молекулярной спектроскопии имело большое значение для развития стереохимии. Можно сказать, что современный период развития спектроскопии начался с интерпретации Бором (Bohr, 1913) спектра атомарного водорода, а в два последующих десятилетия на основе квантовой теории были установлены принципы, позволяющие анализировать спектры небольших молекул. Таким образом, спектроскопия оказалась первым методом, с помощью которого были получены точные данные о размерах молекул в газовой фазе, а определение длин связей и валентных углов в таких простых структурах, как Н2О, HgS, NHg, СО2, С3Н2 и С2Н4, несомненно, явилось первым крупным вкладом спектроскопии в область стереохимии. [c.331]

    Особое внимание уделяется изложению сложных разде.тов курса вопросам стереохимии, электронному строению связей и функциональных групп. Автор стремится дать студентам представление о современном состоянии органической хи.мии, широко использует электронные представления и физические методы. В книге приводятся краткие сведения о рентгеио-структурном анализе, спектроскопии, масс-спектроско-ппи, методах ЯМР, ЭПР и др. [c.2]

    На основе рентгеноструктурного анализа с высоким разрешением проведено сравнение стереохимических свойств трех типов взаимодействий металл—белок. Для установления структурных и электронных факторов, ответственных за регуляцию активности иона металла, рассмотрены координационные центры металл — лиганд в белках и прослежена связь между молекулярной структурой, стереохимией и электронной структурой и биологической ролью функции иона металла. Гидро( бное взаимодействие порфиринового кольца гемоглобина и миоглобина рассмотрено по данным измерений магнитной восприимчивости, спектроскопии парамагнитного резонанса и исследования поляризационных спектров поглощения монокристаллов. С точки зрения электронной конфигурации (1-орбиталей и геометрии координации обсуждается взаимодействие замещенных ионов металлов в карбоксипептидазе А с карбонильной группой субстратов при гидролизе пептидов. Предполагается, что спектральные изменения, зависящие от pH и наблюдаемые в спектре электронного поглощения, замещенного иона Со(П), каталитически активного в карбоангидразе, обусловлены образованием упорядоченной структуры растворителя вблизи иона Со(И), Корреляция между молекулярной структурой, определенной методами рентгеноструктурного анализа, и электронной структурой координационного центра металл — лиганды, оцененной из спектроскопических данных, указывает на происхождение структурной регуляции реакционной способности иона металла в белках и ферментах. [c.123]

    Том 5 (1965 г.). Использование биполярных анротонных растворителей в органической химии. Химия циклических дитерпеноидов. Определение внутримолекулярной водородной связи с помощью инфракрасной спектроскопии и использование этого в стереохимии. [c.173]

    Одновременно Трейлор разработал метод определения конфигурации -меркурированных спиртов с помощью инфракрасной спектроскопии. Введение атома ртути вызывает сдвиг частоты валентных колебаний гидроксила, причем он мал (меньше 10 см ), если нет дополнительного взаимодействия между группами, и существенно больше (около 20 см ), когда стереохимия допускает донорно-акцеп-торное взаимодействие кислород — ртуть. Этот метод оказался очень полезным для достаточно жестких циклических структур , а в случае восьмичленных циклических производных указал на существование в растворе одновременно двух конформеров — с координационной связью кислород — ртуть и без нее . [c.233]

    Из сказанного выше видно, что сколько-нибудь надежным теоретическим ключом к пространственному строению гидразинов являются только расчеты аЬ iвitio. Если молекула самого гидразина, при всех неясных вопросах и сомнительных результатах,хоть в какой-то степени изучена,эгого нельзя сказать об органических производных. Сложность таких производных делает невозможным их изучение без помощи эксперимента, и, естественно, основная масса данных в этой области, как и в других областях органической химии, получена именно экспериментальными методами. Применение большинства из этих методов, в сущности, не связано со спецификой производных гидразина и поэтому выходит за рамки данного обзора. Исключение составляет метод фотоэлектронной спектроскопии (ФЭС) [38], применение которого к стереохимии гидразинов непосредственно связано с их основной особенностью - наличием вицинальных неподеленных пар, что и заставляет нас подробно остановиться на этом методе. [c.169]

    Объектами исследований являлись ароматические одно-, двух- и трехъядерные соединения, содержан1,ие сульфонильную группу. Последние представляют практический интерес как полупродукты в синтезе полимерных материалов [1]. Однако до настоящего времени мало изучены вопросы, касающиеся строения этих соединений и в частности характер внутримолекулярных взаимодействий сульфонильной группы с остальной частью молекулы. Остается неясной и стереохимия многих соединений. Нами сделана попытка связать данные, полученные с помощью абсорбционной спектроскопии, со структурой п свойствами кислородных соедипепий серы. [c.89]

    На стереохимию шестичленных циклических гидразинов, имеющих в кольце дополнительные гетероатомы, оказывают влияние, вероятно, и взаимодействия между этими атомами и атомами азота гидразинного фрагмента. Так, методом спектроскопии ЯМР 1н показано, что 4-алкилтетрагидро-1,3,4-ок-садиазины сушествуют в конформации кресла с преимущественно аксиально ориентированной связью N—Н[70]. В 3,4- [c.28]

    Одним из наиболее существенных вопросов стереохимии плазмало-генов является конфигурация двойной связи в алкенильноэфирной группе. г(ыс-Конфигурация двойной связи в плазмалогенах доказана методами ИК-спектроскопии [наличие полос поглощения в области 1260, 1110, 1660 см (одиночная полоса) и отсутствие поглощения при 1200 и 930 см ] [95] и ЯМР-спектроскопии. Природные плазмалогены характеризуются сигналом —ОСН-группы при 6 = 5,87—5,93 млн-, имеющим вид дублета с / = 6,5 Гц у транс-язоыеров аналогичный сигнал сдвинут в более слабое поле (6 = 6,20—6,28 млн , /=12—13 Гц). [c.252]

    I Однако данные, полученные методом ЯМР спектроскопии [26], сейчас рассматриваются как аргумент в пользу /пранс-присоединения элементов воды к двойной связи в фумаровой кислоте. Стереохимия подобного присоединения влияет только на взаимное расположение имидазольных остатков в активном центре и не затрагивает вопросов, связанных с химическим механизмом катализа, поскольку ни один из механизмов не предполагает прямого переноса водорода от одного имидазольного остатка к другому или любого иного непосредственного взаимодействия имидазольных остатков в активном центре фума-ратгидратазы. [c.177]

    В заключение этой главы следует изложить некоторые соображения относительно физической структуры и стереохимии органических свободных радикалов. Развитие квантовомеханических представлений о химических связях дает более ясное понятие о причинах, обусловливающих стереохимию органических молекул. Так, тетраэдрическая конфигурация насыщенного атома углерода связана с гибридной структурой электронных оболочек типа обеспечивающих связь планарная структура молекулы этилена обусловлена тригональной гибридной структурой типа Однако квантовая механика не дает исчерпывающего ответа относительно гибридной структуры и стереохимических свойств такого простого алкильного радикала, как СНз. Известно, что боралкилы и галогениды с электронными секстетами имеют планарную структуру при этом имеются разнообразные доказательства того, что ионы карбония (изоэлектронные с триалкилами бора) также суще-ствурот предпочтительно в планарной конфигурации. С другой стороны, в аммиаке и аминах электронная конфигурация у атома азота (который имеет восемь электронов на внешней оболочке) имеет форму пирамиды свободно инвертируемой). Алкильные радикалы с семью электронами занимают промежуточное положение, причем это их промежуточное состояние препятствует попыткам определить их структуру обычными методами спектроскопии, электронной дифракции и т. д. [c.26]


Библиография для Спектроскопия связь со стереохимией: [c.115]   
Смотреть страницы где упоминается термин Спектроскопия связь со стереохимией: [c.77]    [c.23]    [c.89]    [c.533]    [c.255]    [c.289]    [c.255]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.406 ]




ПОИСК





Смотрите так же термины и статьи:

Стереохимия



© 2024 chem21.info Реклама на сайте