Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенилаланин биохимическое

    Тот факт, что а-аминокислоты суть составляющие белков, придает им особое значение. Восемь аминокислот называют незаменимыми , потому что млекопитающие не могут их синтезировать и должны получать вместе с пищей. Это изолейцин, лейцин, лизин, метионин, валин, треонин, фенилаланин и триптофан. Они все обладают ь-конфигурацией, и располагать способом получения таких аминокислот весьма важно. Десять лет назад с этой целью использовали в основном биохимические методы, основанные на разделении рацемических смесей. [c.93]


    Несмотря на то что в состав белков человеческого организма и вхог дят все аминокислоты, перечисленные в табл. 14.1, однако отнюдь не все они должны обязательно содержаться в пище. Экспериментально доказано, что для человека существенное значение имеют девять аминокислот. Такими незаменимыми аминокислотами являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Все остальные аминокислоты, которые называют зал1еныл1ьши аминокислотами, человеческий организм способен вырабатывать сам. Минимальные количества аминокислот, необходимые человеку в молодости, были установлены американским биохимиком У. Ч. Роузом. Ерли ежесуточное поступление в организм человека любой из восьми указанных аминокислот (за исключением гистидина) окажется ниже определенного уровня, то организм человека будет выделять больше соединений азота, нежели получать их с пищей белки в его организме станут распадаться быстрее, чем синтезироваться. Потребность молодых людей в аминокислотах колеблется в пределах двукратной дозы, например 0,4—0,8 г лизина в сутки. Минимальная потребность по Роузу представляет собой наибольшую величину для любого из наблюдаемых им лиц. Нет сомнений в том, что каждый человек отличается от другого своими генетическими особенностями, а следовательно, и своими биохимическими характеристиками. Данные, приведенные в табл. 14.2, вдвое превышают значения, установленные Роузом. Предположительно эти количества вполне достаточны для предотвращения нарушений белкового обмена для большинства людей (99%). Потребности женщин составляют приблизительно две трети от количеств, указанных для мужчин. [c.389]

    Аминокислоты, которые не синтезируются в результате биохимических превращений в организме (и поэтому организм получает их исключительно с пищей), называются незаменимыми аминокислотами. Для человека это валин, лейцин, изолейцин, лизин, метионин, треонин, фенилаланин и триптофан. [c.187]

    Как известно, для синтеза белков и других биохимических реакций организм использует исключительно аминокислоты, а не белки, поступающие с пищей. Некоторые аминокислоты, необходимые для роста и нормального функционирования животных организмов, потребляются готовыми из пиш.н, так как скорость их синтеза отстает от скорости расхода. Такие аминокислоты называются незаменимыми аминокислотами, к ним относятся валив, лейцин, изолейцин, фенилаланин, аргинин, треонин, метионин, лизин, триптофан, гистидин. [c.261]

    Поскольку человеческий организм не обладает способностью биохимически синтезировать бензольное кольцо, и фенилаланин, и тирозин относятся к числу так называемых незаменимых аминокислот. Такие аминокислоты поступают в наш организм только с пищей. [c.486]

    Тирозин снижает потребность в фенилаланине на 75 %, поскольку многие биохимические функции фенилаланина требуют его превращения в тирозин. [c.372]


    Примером плейотропного гена у человека служит рецессивный ген, определяющий фенилкетонурию - болезнь, приводящую к серьезным умственным нарущениям. Люди, гомозиготные по этому гену и не подвергавшиеся лечению, отличаются от нормальных по уровню содержания фенилаланина в крови, по коэффициенту умственного развития (1Р), размеру головы, цвету волос (рис. 19.8). На примере фенилкетонурии можно проследить влияние внешней среды на экспрессивность гена. У новорожденных это заболевание выявляется с помощью простого биохимического теста в настоящее время скрининг новорожденных на фенилкетонурию в США и Великобритании является стандартной процедурой. Больные дети, которые с рождения находятся на диете с пониженным содержанием фенилаланина, становятся практически здоровыми людьми. [c.342]

    Мы уже видели, что антибиотики-чрезвычайно важный инструмент в биохимических исследованиях, так как действие многих антибиотиков весьма специфично. Например, рифампицин - мощный ингибитор инициации синтеза РНК (разд. 25.18). Известно много антибиотиков, ингибирующих синтез белка (табл. 27.3). В случае некоторых из них установлен и механизм действия. Стрептомицин - сильно основной трисахарид - препятствует связыванию формилметионил-тРНК с рибосомами и нарушает таким образом правильную инициацию белкового синтеза. Кроме того, стрептомицин вызывает неправильное считывание мРПК. Если в качестве матрицы используется poly(U), то наряду с включением фенилаланина (UUU) происходит включение изолейцина (AUU). Место действия стрептомицина в рибосоме было определено в результате опытов по реконструкции компонентов рибосом из чув- [c.105]

    Чтобы ответить на вопрос, не было ли наблюдавшееся улучшение случайным, в пищу стали добавлять 4 г фенилаланина в день. Вскоре мать сообщила о явном ухудшении в состоянии ребенка. При госпитализации у девочки были вновь обнаружены биохимические и клинические изменения (рис. 4.25). Этот случай продемонстрировал благотворное действие диеты с низким содержанием фенилаланина на больных ФКУ. В той же статье авторы писали, что ... проводятся дальнейшие контрольные испытания, причем особое внимание [c.51]

    Патологическое состояние, известное под названием фенилкетонурия (ФКУ), в отсутствие лечения может привести к тяжелой форме умственной отсталости. Биохимическая природа ФКУ известна уже около 30 лет заболевание обусловлено недостатком или полным отсутствием активности фермента, который катализирует превращение аминокислоты фенилаланина в другую аминокислоту, тирозин. Недостаточная активность этого фермента приводит к тому, что в тканях накапливается избыток фенилаланина и некоторых его метаболитов, в частности кетонов, что неблагоприятно сказывается на развитии центральной нервной системы. После того как бьши выяснены биохимические основы ФКУ, удалось найти рациональный способ лечения больным детям назначают диету с пониженным содержанием фенилаланина. Массовое обследование новорожденных на ФКУ позволяет в случае надобности начать лечение незамедлительно. [c.10]

    Выявление гетерозиготных носителей того или иного заболевания возможно путем использования биохимических тестов (прием фенилаланина для выявления фенилкетонурии, прием сахара — сахарного диабета и.т.д.), микроскопического исследования клеток крови и тканей, определения ак- [c.35]

    Биосинтез Сд-веществ протекает через щнкнмовую и префеновую кислоты. Из этих кислот образуется пировиноградная кислота или биохимически эквивалентные ей коричная кислота или фенилаланин. Радиоактивный фенилаланин, если его ввести в сосну, очень быстро превращается в радиоактивный кониферин. Последний расщепляется р-глюкозидазой, а затем под действием фенолоксидазы и пероксидазы превращается в лигнин. Если ввести в сосну радиоактивный кониферин или фенилаланин, то в течение нескольких дней большая часть радиоактивности переходит в лигнин. [c.550]

    Аскорбиновая кислота вместе с Fe(II) и О2 служит мош-ным неферментативным гидроксилируюшим реагентом для ароматических соединений . Как и гидроксилазы, этот реагент атакует нуклеофильные участки (например, в процессе преврашения фенилаланина в тирозин). Атомы кислорода включаются в гидроксилированные продукты. Хотя в реакционной смеси образуется Н2О2, заменить аскорбат она не может. Однако не ясно, какое отношение эта система имеет к биохимическим функциям аскорбата. [c.443]

    Название катехоламин происходит от пирокатехина (орто-заме-щенного дигидроксибензола), остаток которого является обшим для всех трех соединений. Исходным веществом при их биосинтезе (рис. 8.16) служит аминокислота тирозин, получаемая либо гидроксилированием фенилаланина, либо непосредственно из пищи. Первой и скоростьопределяющей стадией, главной для регуляции их биохимического синтеза, является гидроксилиро-вание тирозина до дигидроксифенилаланина (DOPA) ферментом тирозингидроксилазой (КФ 1.14.16.2). Далее DOPA декарбокси-лируется с помощью декарбоксилазы (КФ 4.1.1.26), а образующийся допамин превращается в норадреналин допамин-р-гпдро- [c.216]

    Нарушения обмена аминокислот. Фенилкетонурия является одним из наиболее распространенных заболеваний обмена фенилаланина и связана с отсутствием в организме фермента фенилаланин-4-гидроксилазы, которая катализирует превращение фенилаланина в тирозин. В организме при этом скапливается большое количество фенилаланина, вызывающее ряд вторичных биохимических реакций. Так, взаимодействие фенилаланина с пируватом приводит к образованию фенилпировиноградной кислоты, которая в больших количествах выводится с мочой. (Это и послужило основанием для названия данной патологии.) Фенилаланин или его производные поражают ткани мозга, что приводит к умственной отсталости — олигофрении. [c.89]


    Фенилэтиламин eHjGHjGHaNHj — основное вещество этого ряда (жидкость, кипящая при 198°), образуется при биохимическом декарбоксилировании фенилаланина (см. ниже). Сянтетически он получается каталитическим гидрированием ij-нитростирола (том I) в присутствии коллоидной платины [c.355]

    Ниренберг и Маттеи получили экстракт из кишечной палочки и добавили к нему искусственную РНК, состояш,ую-только из урацилов. Так бесклеточной системе был задан первый вопрос какой аминокислоте соответствует кодон/ УУУ Ответ был однозначен кодону УУУ отвечает фенилаланин. Этот ответ, о котором Ниренберг сообш,ил на Международном биохимическом конгрессе в Москве в 1961 г., произвел настоящую сенсацию. Путь к расшифровке кода был открыт  [c.29]

    Описанные явления относятся к так называемым молекулярным болезням и намечают новый подход к лечению различных заболеваний, заключаюш,ийся в восстановлении нормального строения уродливых молекул. Показано также, что незначительные изменения строения белковой молекулы приводят к изменению выполняемых ею биохимических функций. Так, например, гормон гипофиза (синтезирован в 1954 г.), вызывающий сокращение мышц матки, и вазопрессин, изменяющий кровяное давление, различаются строением лишь двух аминокислот изолейцин и лейцин оксито-цина заменены в вазопрессине соответственно фенилаланином и аргинином. [c.282]

    Приведенный ниже материал можно было бы сгруппировать на основании классификации, принятой недавно Международным биохимическим союзом. Хотя такая классификация ферментов и желательна, все же для неэнзимоло-гов, интересующихся фенолами, изложение будет более наглядным, если обсуждение свести к некоторым метаболическим путям (например, путь через шикимовую кислоту), соединению или группе соединений (реакции фенилаланина и тирозина) или типу реакций (метилирование). Особое внимание уделено степени очистки ферментов в каждой конкретной работе. [c.314]

    Изучены биохимические свойства многочисленных низкомолекулярных альбуминов, встречающихся в мышцах рыб [283, 284]. Хотя физиологическая функция этих белков молекулярного веса около 11 ООО неизвестна, они отличаются необычным аминокислотным составом — содержанием около 10% фенилаланина, 20% аланина и малым содержанием или отсутствием триптофана, тирозина, метионина, гистидина, цистеина и аргинина. Кроме того, они характеризуются высоким сродством к кальцию. Все это наводит на мысль, что альбумин карпа, возможно, аналогичен тро-понину А млекопитающих и мышц птиц [285] и, следовательно, может служить посредником участия кальция в мышечном сокращении [286]. [c.113]

    Из обычных аминокислот флуоресцируют только те, которые содержат ароматические системы, например триптофан, тирозин и фенилаланин [343]. Они поглощают только ниже 300 нм, и в этой области возбуждаются также многие другие распространенные соединения, например продукты гидролиза белков. Поэтому Ваалкс и Юденфренд [344] разработали для тирозина химический метод (реакция с а-нитрозо-р-нафтолом в присутствии азотной и азотистой кислот) получения флуоресцирующего продукта, который можно возбудить в видимой области при 460 нм. Такой способ применяется, например, для определения тирозина в плазме или ткани с использованием сравнительно простой методики, не требующей полного выделения тирозина. В биохимических исследованиях такой принцип — сдвиг параметров флуоресценции в более длинноволновую область — очень часто используется с целью избежать помех, обусловленных многими сопутствующими веществами, и обеспечить более надежную идентификацию. [c.435]

    Можно представить себе, что эволюция сосудистых растений началась с примитивных водных таллофитов, которые были полноценны в биохимическом отношении и выделяли побочные продукты метаболизма в окружающую среду. Развитие из этих организмов наземных растений должно было вызвать к жизни проблему выделения. Поэтому возникла тенденция к сохранению побочных продуктов обмена в тканях, особенно в связи с тем, что размер растений увеличивался. В этот момент и мог возникнуть мутант, который обладал единственным новым ферментом (фенилаланиндезаминазой), способным превращать фенилаланин в коричную кислоту. Таким образом, в клетке появился новый продукт, который мог претерпевать другие превращения (например, этерификацию) благодаря действию ферментов с низкой субстратной специфичностью, уже присутствовавших у растения и участвовавших в первичном обмене веществ. Таким образом, одна-единст-венная мутация в условиях ограниченного выделения могла привести к появлению разнообразных продуктов. Если эти продукты имели значение для выживания мутанта, то он процветал, причем последующие единичные мутации могли привести к ноявлению высокоразвитого обмена фенилпропаноидных соединений. Возможно, что лигнин возник на этой стадии как продукт детоксикации нутем превращения фенольных соедипений в нерастворимую форму за счет окислительной полимеризации. После этого в наличии оказались все вещества, необходимые для дифференциации сосудистых тканей. Можно себе представить, что на этой стадии развились первые трахео-фиты, такие, как ископаемые Р811орЬу1а1ез, которые позднее дали начало современным сосудистым растениям. Впоследствии лигнин стал необходимым для растений продуктом. Итак, можно сказать, что эволюция растений, имеющих большие размеры (деревья), стала возможной благодаря отсутствию у примитивных растений развитой системы выделения, что, казалось бы, напротив, должно было затормозить эволюцию массивного тела растения. [c.371]

    В начале нашего столетия Эрлих описал биохимическое расщепление серии аминокислот. Оказалось, что дрожжи в процессе брожения перерабатывают преилпществснно ь-ф< р-мы аминокислот, а их оптические антиподы накапливаются. Таким путем могут быть выделены с выходом 60—/0% оптически чистые D-изомеры аланина, лейцина, валина, изолейцина, изо-валина, серина, фенилаланина, глутаминовой кислоты, гистидина. Однако подобным биохимическим методом удается расщепить не все аминокислоты. Фенилглицин получается лишь с небольшим вращением, а рацематы аспарагиновой кислоты, пролина и тирозина совсем не расщепляются действием бродящих дрожжей. [c.574]

    При блокировании нормальных путей катаболизма фенилаланина на первый план выходят несколько катаболических реакций, которые протекают в нормальной печени, но обычно имеют второстепенное значение. У больных фенилкетонурией в крови и моче появляются фенилпируват, фениллактат, фенила-цетат и фенилацетилглутамин (рис. 31.16). Хотя присутствие фенилпирувата в моче больных фенилкетонурией может быть установлено путем простого биохимического анализа, для убедительного диагноза необходимо зарегистрировать повышение содержания фенилаланина в плазме крови. [c.331]

    В гл. 10 мы рассматривали гипотезу один ген-один полипептид . На уровне первичного действия гена каждый ген имеет единственную функцию кодирование одного полипептида. Плейотропный эффект, таким образом, является отражением интегрированности процессов развития, в которых продукт одного биохимического пути может в конечном итоге оказывать влияние на множество путей развития. В примере с фе-нилкетонурией нормальный ген кодирует фермент, синтезирующий тирозин из фенилаланина. У страдающих фенилкетонурией этого фермента нет, поэтому у них фенилаланин накапливается в крови. В результате происходит нарушение развития мозга, что приводит к уменьшению размеров головы и снижению 1р. Кроме того, из тирозина образуется [c.342]

    Впоследствии, вероятно, в результате распада тканей возникла общая аминокис-лотурия. Поэтому в пищу стали добавлять фенилаланин (в диету включили молоко) потребления 0,3-0,5 г оказалось вполне достаточно для нормальной прибавки веса и улучшения биохимических показателей. [c.50]

    Увеличение внутриклеточного уровня Са может приводить к активированию секреции основных пероксидаз в свободное пространство, где они, взаимодействуя с донорами электронов и, возможно, с циркулирующей ИУК, утилизируют перекиси ослабление связи основных пероксидаз с мембранными структурами позволяет им действовать как 1-аминоцик-лопропан-1-карбоновая кислота (АЦК)-оксидаза. В результате ИУК и АЦК-оксидаза вызывают изменение в преобразовании этилена, который далее индуцирует (через механизм запуска синтеза белков) увеличение активности фенилаланин-аммиак-лиазы и кислых пероксидаз. На основании отдельных результатов исследований и интерпретации модельных состояний возможного течения биохимических реакций были получены доказательства существования двух различных механизмов контроля метаболизма основными и кислыми пероксидазами, опосредованных этиленом. Эти два механизма, контролируемые разными пероксидазами, могут быть главными в тех реакциях, которые активизируются в ответ на различные внешние воздействия (стресс) (рис. 22). Авторы подчеркивают регуляторную роль деятельности фермента пероксидазы и фенольных соединений. [c.103]

    После обоснования принципа генетического кода необходимо было экспериментальным путем установить, какие конкретные триплеты кодируют каждую из 20 аминокислот. Начало решению этой сложной задачи было положено в опытах американских биохимиков М. Ниренберга и Дж. Маттеи. В 1961 г. на V Меледународ-ном биохимическом конгрессе в Москве М. Ниренберг долол<йл об открытии триплета, кодирующего синтез аминокислоты фенилаланина. Ниренберг и Маттеи использовали в своих опытах самую [c.151]

    Большинство больных — блондины со светлой кожей и голубыми глазами, что определяется недостаточным синтезом пигмента меланина. Диагноз заболевания устанавливается на основании клинических данных и результатов биохимического анализа мочи (на фенилпировиноградную кислоту) и крови (на фенилаланин). С этой целью несколько капель крови на фильтровальной бумаге подвергают хромато-фафии и определяют содержание фенилаланина. Иногда используют пробу Феллинга — в 2,5 мл свежей мочи ребенка добавляют 10 капель 5% раствора треххлористого железа и уксусной кислоты. Появление сине-зелено-го окрашивания указывает на наличие заболевания. [c.200]

    Централизованные биохимические лаборатории целесообразно организовывать для региона с рождаемостью 50—100 ООО новорождённых в год. В таких лабораториях в пятнах крови определяют количество фенилаланина с помощью одного из 3—4 методов (качественный микробиологический тест Гатри, количественная флюориметрия, полуколичественные распределительная хро-матофафия на бумаге и тонкослойная хроматография). В России в последние десятилетия введена федеральная программа скрининга, основанная на флю-ориметрическом количественном методе определения фенилаланина в крови. В разных странах применяются различные методы. Опыт показал, что пропущенные случаи фенилкетонурии являются не ошибками лабораторных методов, а следствием недобросовестности или небрежности при взятии крови в родильных домах. [c.337]

    При подтверждении диагноза фенилкетонурии ребёнок переводится на искусственную диету, основу которой составляют безфенилаланиновые препараты (например, отечественные препараты афенилак и тетрафен). Витамины и минеральные соли вводятся в диету в виде фармакологических препаратов. Со временем диета расширяется. Дети после 1 года легче переносят пищевой фенилаланин. Лечение диетой проводится под регулярным биохимическим контролем концентрации фенилаланина в крови 2 раза в неделю в 1-й месяц (обычно это период госпитализации), еженедельно до 6-месячного возраста. [c.337]

    Чрезвычайная зависимость приспособляемости в поведении организма от специфических биохимических отклонений хорошо видна на примере фенилкетонурии. Эта болезнь возникает вследствие врожденной неспособности организма к участию в одной из реакций обычной цепи биохимических процессов в результате отсутс вия энзима, специфичного для данной реакции. Дефект распада аминокислоты фенилаланина делает невозможным обыч- ное превращение ее в тирозин (рис. П-2). [c.26]

    В отсутствие энзима фенилаланин переходит в фенилкетоны, которые угнетающе действуют на центральную нервную систему. Ненормальное протекание метаболизма обусловлено присутствием в печени одного дефективного гена. Фенилкетонурики обычно страдают умственной неполноценностью. Может наблюдаться неадекватное усиление рефлексов, спастическое состояние мышц, припадки. Биохимически с фенилкетонурией связаны два других заболевания алкаптонурия и эндемический зоб, но при этих заболеваниях не наблюдаются значительные отклонения в поведении. [c.26]


Смотреть страницы где упоминается термин Фенилаланин биохимическое: [c.101]    [c.138]    [c.194]    [c.686]    [c.686]    [c.668]    [c.259]    [c.293]    [c.217]    [c.550]    [c.276]    [c.53]    [c.317]    [c.19]    [c.177]   
Основы стереохимии (1964) -- [ c.574 ]




ПОИСК





Смотрите так же термины и статьи:

Фенилаланин

Фенилаланин Фенилаланин



© 2025 chem21.info Реклама на сайте